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A B S T R A C T   

Imperiled species face numerous and diverse anthropogenic threats to their persistence, and 
wildlife managers charged with making conservation decisions benefit from a sound under
standing of how populations, species, and ecosystems will respond to future changes in threats to 
biodiversity. In southeastern North America, the gopher tortoise (Gopherus polyphemus) is a 
keystone species in upland ecosystems; however, tortoise populations have declined strongly over 
the last century, and the species is a candidate for increased protection by the United States 
federal government under the Endangered Species Act (ESA). Here, we sought to support con
servation decision making for G. polyphemus by developing a spatially-explicit predictive popu
lation model that linked four anthropogenic threats (climate warming, sea-level rise, 
urbanization, habitat degradation) to demographic vital rates and used the model to estimate 
future changes in the number of individuals, populations, and metapopulations across the species’ 
range. Using recent survey data, we projected 457 populations for 80 years into the future under 
scenarios varying in threat magnitude, management magnitude, and demographic uncertainty. 
Population projections predicted that the number of individuals, populations, and meta
populations would decline among all simulated scenarios in the next 80 years. Model predictions 
were more sensitive to variation in adult survival and immigration rates than to variation in 
threat magnitude. A scenario with decreased habitat management and threat effects from climate 
warming, sea-level rise, and urbanization predicted geographic variation in persistence proba
bilities for populations that might result in decreased genetic representation across the species’ 
range. Our results can be used to support conservation listing decisions for the gopher tortoise as 
part of its federal Species Status Assessment and provide an analytical framework for how to link 
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diverse threats to geographically-varying demographic rates during population viability analyses 
for wide-ranging imperiled species around the world.   

1. Introduction 

Global biodiversity is currently experiencing a sixth mass-extinction event driven by anthropogenic activities (Ceballos et al., 
2020), and a fundamental goal of conservation biology is to sustainably conserve biodiversity and ecosystem function in the face of a 
changing global environment (Meine et al., 2006). This goal is a challenge because endangered species and ecosystems face a myriad of 
diverse and interactive threats, including habitat loss, climate change, sea-level rise, emerging infectious disease, invasive species, and 
human take, among others (Côté et al., 2016; Lacy et al., 2017). To manage and conserve endangered species, for example, in the face 
of threats, managers and regulatory agencies benefit from having predictions for how populations or systems will respond to future 
conditions and a mechanistic understanding of how threats influence systems (Beissinger and McCullough, 2002). Predictions can 
estimate the risk of the species becoming extinct (i.e., extinction risk; e.g., Wiegand et al., 1998); if estimated extinction risk is deemed 
unacceptably high, resources can then be allocated for management (Lyons, 2020). In turn, a mechanistic understanding of threats can 
identify which ones have the greatest effect on system dynamics and guide management actions to reduce or manipulate the most 
influential threats (Lunney et al., 2007). However, mechanistic predictive models inferring how human-made threats influence wildlife 
can be difficult to build, because hypothesized threats can be numerous (Lacy et al., 2017), threat effects may be unknown or char
acterized with great uncertainty (Runge et al., 2011), and system dynamics may be unstable (Tucker and Runge, 2021). However, 
predictive modeling tools that account for uncertainty (Zylstra and Zipkin, 2021) are a useful and often essential component of most 
decision making processes (Runge et al., 2020). 

In efforts to prevent extinctions and halt biodiversity declines, countries worldwide have passed laws that provide legal impetus for 
and create practical structure to support the conservation of imperiled species. In the United States of America (United States), the 
Endangered Species Act (ESA) is a federal law passed in 1973 (as amended; 16 U.S.C. 1531–1543) that seeks to first protect species 
from extinction and then recover the populations of imperiled species listed under the ESA to the point where federal protection is no 
longer needed. However, a common problem is that agencies must make difficult decisions about which species to protect, given 
limited budgets (Shogren et al., 1999), which requires identifying species with elevated extinction risk in the face of multiple threats 
that may not be easy to understand. 

To support challenging listing decisions under the ESA in the United States, agencies have recently adopted a consistent and 
transparent approach to inform conservation listing decisions, the Species Status Assessment (Smith et al., 2018). The Species Status 
Assessment (SSA) process is a standardized, three-step framework that first compiles comprehensive life-history and ecological in
formation available for the species, next evaluates the current conditions of the species and how anthropogenic threats have 
contributed to population declines, and last predicts how the species will respond to plausible future scenarios, including threats and 
management alternatives, while accounting for uncertainty (McGowan et al., 2020; Smith et al., 2018). When estimating the current 
and future predicted conditions of a species, the SSA framework aims to provide a descriptive scientific document to support listing 
decisions that accounts for the conservation biology principles of population resiliency (the ability of a species to persist in the face of 
environmental stochasticity), redundancy (the ability of a species to withstand catastrophic events, by spreading risk among multiple 
populations), and representation (the ability of a species to adapt to a changing environment, as measured by the breadth of genetic 
and environmental variation among populations; Smith et al., 2018). However, making accurate predictions for how a species’ 
population resiliency, redundancy, and representation might change in the future can be difficult, because numerous, diverse threats 
may influence populations, threats may vary in space and time, and life history knowledge for the focal species may be characterized 
by significant uncertainty (Lacy et al., 2017; Runge et al., 2011; Smith et al., 2018). 

Here, we describe a spatially explicit predictive population modeling analysis built as part of the SSA for an imperiled species in 
southeastern North America, the gopher tortoise (Gopherus polyphemus). We reviewed the literature describing gopher tortoise life 
history and adapted a previously published population model for six gopher tortoise populations in Alabama (Folt et al., 2021) to 
estimate persistence probability of populations across the species’ range while accounting for geographic variation in life history and 
threats. We expanded the model to link intrinsic factors (demographic vital rates) to four extrinsic anthropogenic factors that are 
hypothesized to threaten gopher tortoise population persistence (climate warming, sea-level rise, urbanization, and shifts in habitat 
management) across the species’ range and estimated future threats using predictions from published models. We projected gopher 
tortoise population conditions into the future under multiple future scenarios that represent uncertainty in threat magnitude and 
presence and estimated (1) the sensitivity of populations to uncertainty in demographic rates and individual threats, and (2) how 
populations will respond to a future world with multiple, synergistic threats in ways useful for risk assessment during SSAs. 

2. Materials and methods 

2.1. Study species 

The gopher tortoise is an ecologically significant, ecosystem engineering species that occupies sandy habitats in the Coastal Plain 
ecoregion of southeastern North America, with extant populations ranging from the Florida peninsula north to southern South Carolina 
and west to eastern Louisiana (Auffenberg and Franz, 1982). Gopher tortoises are frequently associated with the longleaf pine (Pinus 
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palustris) ecosystem (Nussear and Tuberville, 2014), where individuals construct long underground burrows that provide habitat for >
350 commensal species (Jackson and Milstrey, 1989; White and Tuberville, 2017). However, the species can also occupy open pine, 
sandhill, scrub, xeric hammock, dry prairie, coastal dune, and ruderal (i.e., disturbed) ecosystems. Because the diversity of commensal 
species in the longleaf pine ecosystem has been linked to the abundance of tortoise burrows, the gopher tortoise has been hypothesized 
as a keystone species (Mills et al., 1993) that may be important in regulating diversity in the longleaf pine ecosystem (Catano and Stout, 
2015; Guyer and Bailey, 1993) – an ecosystem that contributes substantially to a globally significant biodiversity hotspot in south
eastern North America (Noss et al., 2015). However, gopher tortoises have declined precipitously throughout much of their range over 
the last century (Auffenberg and Franz, 1982), including on protected landscapes for conservation that are relatively buffered from 
anthropogenic threats (McCoy et al., 2006). Mechanisms driving tortoise population declines in the past, present, and future are 
numerous and include: habitat degradation and loss due to fire suppression (Landers and Speake, 1980), urbanization and sea-level rise 
(Mushinsky et al., 2006), road mortality (Smith et al., 2006; Steen et al., 2006), disease (Berish et al., 2010; Ozgul et al., 2009), and 
human take (Guyer et al., 2015). 

Given concerns about population declines, the U.S. Fish and Wildlife Service (hereafter, USFWS) gave federal protection for gopher 
tortoises in 1987 by listing populations in Louisiana, Mississippi, and Alabama west of the Mobile and Tombigbee rivers as ‘Threat
ened’ under the ESA (US Fish and Service, 1987). Despite the ESA listing designation, concerns about declining population trends and 
perceived unviability of populations across the species entire range have continued in recent decades (e.g., McCoy et al., 2006), and in 
2006 the USFWS was petitioned to list additional populations as ‘Threatened’ as well. Subsequent review found that conditions 
experienced by the species in the eastern portion of its range potentially warranted listing as well (US U.S. Fish and Wildlife Service, 
2011), which led the USFWS to conduct an SSA during 2019–2021 to summarize the species’ biology, review threats to its persistence, 
evaluate the species’ current conditions, and make predictions about how the species will respond to future conditions. The USFWS 
will use information gathered during the SSA to make a listing decision, which will include whether to alter the spatial extent of where 
the species is protected under the ESA by 2022. 

2.2. Analysis overview 

We sought to predict population growth and extinction risk for the gopher tortoise in a population viability analysis (PVA) 
framework. We built a stage-based population model (i.e., Lefkovitch model; Lefkovitch, 1965) and used the model to project pop
ulation size and structure forward in time with simulations. For the PVA, we conceptualized local population demography of tortoises 
in a two-stage, female-only model with two discrete life stages: juveniles and adults (Fig. 1); we assumed a pre-breeding census. During 
a given time-step, both stages had a probability of individuals surviving and remaining within the stage, juveniles had a probability of 
maturing to become adults, and adults had a probability of reproducing and potentially recruiting individuals into the juvenile stage. 
Individuals that did not survive during a time-step were assumed to have either died or permanently emigrated from the population. 
We also modeled recruitment into the adult stage by immigration (see below). 

Fig. 1. A conceptual model illustrating a stage-based, female-only, pre-breeding census population model (black text) used to simulate demography 
and project abundance of gopher tortoise (Gopherus polyphemus) populations into the future. Black arrows and circles indicate gopher tortoise 
demographic parameters (survival, growth, abundance); colored arrows and text indicate predicted threat effects on tortoise demography simulated 
through scenario analysis. See Table 1 for demographic variable definitions and baseline estimates; MAT is mean annual temperature (◦C) and BP is 
burn probability with prescribed fire (see Methods). For each threat (colored box), we modeled three or four scenarios of future change in threat 
magnitude (Table 2). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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We aimed to model how predicted future changes to abiotic and biotic features in southeastern North America may threaten future 
population persistence of gopher tortoises across the species’ range. We met with scientists with expert knowledge in both gopher 
tortoise population biology and habitat management and identified a series of factors that experts considered to have high likelihood of 
influencing tortoise demographics in the future (hereafter, threats). Using the list of threats, we reviewed the literature to identify 
research describing quantitative effects of threats (or similar mechanisms) on specific demographic parameters in our stage-based 
population model for tortoises. Here, we describe hypotheses for how four threats (climate warming, sea-level rise, urbanization, 
and climate-change effects on habitat management) may influence tortoise demographic rates. 

2.2.1. Climate warming 
Climate change is predicted to drive warming temperatures and seasonal shifts in precipitation across southeastern North America 

(Dalton and Jones, 2010). Of these two effects, warming temperatures may have the greater impact on gopher tortoises, because 
tortoise demography is known to be sensitive to temperature gradients across the species’ range. Specifically, maturity age and 
fecundity vary along a north-south latitudinal gradient, where warmer, southern populations have faster growth rates, younger 
maturity ages, and increased fecundity relative to cooler, northern populations (Ashton et al., 2007; Meshaka Jr. et al., 2019). As 
climate warming increases temperatures in the region, individuals in populations may experience more favorable conditions for 
growth and reproduction across the species’ range. Because no studies have linked tortoise growth or fecundity to interannual or 
interpopulation variation in precipitation, it seems less likely that climate-driven shifts in precipitation will influence tortoise 
demography. 

2.2.2. Habitat management 
Through much of its range, gopher tortoises prefer upland habitat with open canopy, sparse midstory, and an understory plant 

community that provides diverse food sources (Aresco and Guyer, 1999a; Bauder et al., 2014; Birkhead et al., 2005; McCoy et al., 2013; 
Nussear and Tuberville, 2014). Prescribed fire is the most common management technique to maintain high-quality, open habitat for 
gopher tortoises (Ashton et al., 2008; Diemer, 1986; Landers and Speake, 1980; Yager et al., 2007); however, when fire is not present in 
sufficient intervals or intensity to maintain open habitat on the landscape, apparent survival of gopher tortoises decreases (Hunter and 
Rostal, 2021), potentially to levels that are insufficient for maintaining population viability (Folt et al., 2021). Wildlife managers 
tasked with maintaining high-quality upland habitat for gopher tortoises and other fire-dependent upland plant and animal species 
(Guyer and Bailey, 1993) may be challenged because regional climate warming may make habitat management with prescribed fire 
more difficult to accomplish. Managers require suitable fuel and weather conditions (e.g., relative humidity, temperature, wind speed; 
i.e., the ‘burn window’) to facilitate manageable fire behavior that will accomplish intended goals while limiting risk toward human 
communities. However, climate-change models predict the availability of burn window conditions to shift over future decades, with 
available conditions for fire management increasing in the winter but decreasing in the spring and summer (Kupfer et al., 2020); 
summed together, seasonal shifts in the burn window conditions will decrease overall opportunity for management with prescribed 
fire. If managers become limited in the use of prescribed fire, resulting decreases in habitat quality may drive decreases in gopher 
tortoise survival (Hunter and Rostal, 2021). 

2.2.3. Urbanization 
Human development of the landscape (i.e., urbanization) threatens terrestrial wildlife communities in the southeastern United 

States, including gopher tortoise populations that often rely on upland habitats that are popular sites for urban development or 
agriculture. While the local tortoise populations we were interested in modeling are largely on conservation lands intended for wildlife 
conservation, urbanization threatens to surround these conservation lands, disrupt habitat connectivity, and decrease metapopulation 
dynamics that maintain connectivity and gene flow both within and among metapopulations. Additionally, urbanization can disrupt 
habitat management by decreasing the ability of managers to use prescribed fire. 

2.2.4. Sea-level rise 
Warming temperatures across Earth are causing the polar ice caps to shrink, release freshwater into the oceans, and drive sub

stantial increases in oceanic levels worldwide (hereafter, sea-level rise) (IPCC , 2013). In southeastern North America, sea-level rise is 
predicted to influence low-lying coastal habitats by causing floods, inundation, and shifts in land-cover types (Marcy et al., 2011). 
Because gopher tortoises are a terrestrial species and not suited to wetland habitats, sea-level rise may negatively affect gopher tortoise 
populations in low-lying coastal areas, such as coastal sand-dune environments (Blonder et al., 2020). 

2.3. Demographic parameters 

We used the model to predict future abundance of populations across the range of the gopher tortoise using a first-order Markovian 
process in which adult abundance at time t was a function of adult and juvenile abundance at time t-1 with vital rates stochastically 
drawn from parameter distributions: 

Na
t = Na

t− 1 × φa
t− 1 + Nj

t− 1 × φj
t− 1 × τt− 1 + Ni

t− 1, (1)  

where N is abundance, φ is the apparent annual survival rate, and τ is an annual juvenile-adult transition rate (i.e., maturation) during 
each time step t (year); superscripts a, j, and i denote adults, juveniles, and immigrants, respectively. 
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Juvenile abundance at time t was a function of juvenile and hatchling abundance at time t-1 with vital rates similarly drawn from 
parameter distributions: 

Nj
t = Nj

t− 1 × φj
t− 1 × (1 − τt− 1)+Rt− 1, (2)  

where N is abundance, φ is survival, τ is the juvenile-adult transition rate, and R is recruitment (below) during each time step t (year). 
We did not include immigration in the juvenile stage, because studies of tortoise movement have mostly described long-distance 
dispersal events for adults. We modeled initial abundance of adults and juveniles as log-normally distributed random variables. 

For individuals to recruit into the juvenile stage, adult females must lay eggs that hatch into offspring and survive until the next 
survey period (i.e., time step). Therefore, we estimated annual recruitment (R) at time t as the product of: 

Rt = PBt × Ft × NSt × VEt × PF × φh
t , (3)  

where PB is the probability of females breeding, F is the mean number of eggs laid per breeding female (fecundity), NS is the prob
ability of nests surviving predation, VE is the proportion of eggs that are viable and hatch, PF is the probability of eggs being female, 
φh is the survival probability of hatchlings through the first year to the next survey period at time t (Noon and Sauer, 1992), and the 
superscript h denotes hatchling. We modeled probabilities (PB, NS, VE, PF, φh) as beta-distributed random variables, and we modeled 
fecundity as a log-normally distributed random variable. 

2.4. Spatial variation in demographic parameters 

We first sought to construct a baseline population model that approximated demographic conditions experienced by gopher tor
toise populations in recent decades across the species’ range. However, populations of gopher tortoises experience geographic vari
ation in abiotic characteristics, and variation in abiotic characteristics influences demographic rates among populations across the 
species’ range. For example, at southern latitudes, populations experience significantly warmer mean annual temperature, which may 
afford greater overall opportunity for thermoregulation, energy acquisition, and metabolism when compared to northern populations. 
As a result, southern populations of tortoises experience faster growth rates, younger ages of sexual maturity (hereafter, maturity age), 
and increased clutch size (Ashton et al., 2007; Meshaka Jr. et al., 2019; Mushinsky et al., 1994). Because our goal was to predict 
population growth and extinction risk of populations across the species’ range and predictive population models are most useful when 
demographic parameters are modeled specific to populations of interest (Ralls et al., 2002), we extended the model to accommodate 
geographic variation in demographic rates by estimating parameters specific to the geographic location of populations. 

We reviewed the literature for demographic estimates from gopher tortoise populations in the wild (Supplementary Figure 1). We 
fit linear regression models to estimate relationships between demographic rates (maturity age, clutch size) and mean annual tem
perature (hereafter, MAT; ◦C) sourced from the ‘WorldClim’ database (Hijmans, 2020). After testing whether our data met assumptions 
of parametric statistics, we evaluated whether regression models estimated statistically significant effects of independent variables on 
response variables with α = 0.05. We used observed statistically significant linear relationships between MAT and demographic rates 
among populations as a predictive tool to generate mean parameter estimates with error for populations in our predictive modeling 
framework, given georeferenced data describing MAT for populations. If parameters were not known to vary geographically (e.g., 
survival), we modeled mean values as invariant among populations. 

We modeled the proportion of breeding females (i.e., that lay eggs; PB) in a given year as 0.97 (Hunter et al., 2021). We modeled 
fecundity (F) by using the regression coefficient describing the relationship between MAT and mean clutch size (above) to simulate 
mean values of F for populations, given the geographic location and MAT of a population. We modeled the probability of nests that 

Table 1 
Mean and error values used to estimate stochastic demographic parameters in our population projection model for gopher tortoises (Gopherus 
polyphemus) in conservation lands across the species’ range. MAT = mean annual temperature (◦C) of a population’s locality; adult survival (φa) was 
modeled with a baseline rate of 0.96 and with a negative effect of years since last burn (YSB) of habitat using prescribed fire. See Supplementary 
Figure 1 for the full list of references used to compile parameter estimates for variables in the table.  

Parameter Abbreviation Distribution shape Mean (variance) Source 

Probability of breeding PB Beta 0.97 (0.01) Hunter et al. (2021) 
Fecundity F Log normal -3.54 (2.42) + 0.48 (0.12) * MAT Supplementary Figure 1 
Nest survival NS Beta 0.35 (0.10) Smith et al. (2013) 
Probability of viable eggs VE Beta 0.85 (0.05) Landers et al. (1980), Rostal and Jones (2002) 
Probability of female PF Beta 0.50 (0.04) This study 
Hatchling survival φh Beta 0.13 (0.03) 

Perez-Heydrich et al. (2012) 
Juvenile survival φj Beta 0.75 (0.06) 

Supplementary Figure 1 
Adult survival φa Beta 0.96 (0.03) – 0.027 (0.003) * YSB 

Supplementary Figure 1; Hunter and Rostal (2020) 
Maturity age MA Log normal 43.52 (11.31) – 1.41 (0.53) * MAT Supplementary Figure 1; this study 
Juvenile abundance Nj Log normal Varying by population This study 
Adult abundance Na Log normal Varying by population This study 
Immigration rate γ Beta 0.01 (0.001) Ott-Eubanks et al. (2003)  
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survive predation (NS) as 0.35 using an estimate from unmanipulated nests (Smith et al., 2013). We modeled the probability of eggs 
being viable and hatching (VE) as 0.85 (σ2 = 0.05), an average from a review of field hatching rates (Landers et al., 1980; Rostal and 
Jones, 2002). To account for males (and remove them) during projections, we assumed that sex ratios of eggs were even within 
populations and modeled the probability of eggs being female (PF) as 0.5 (σ2 = 0.04). We modeled hatchling survival (φh) from nest 
emergence until the following survey period as 0.13 (0.04–0.34, 95% confidence intervals [CI]), given results from a meta-analysis of 
hatchling survival of gopher tortoises (Perez-Heydrich et al., 2012). For each recruitment parameter, we modeled parameters using 
appropriate statistical distributions (below) and randomly estimated the parameter in each year using stochastic draws using estimates 
of variance associated with parameter estimates (Table 1). 

We modeled maturity age by using the regression coefficient describing the relationship between MAT and maturity age (above) to 
simulate mean values of maturity age for populations, given the geographic location and MAT of a population. Given a predicted 
maturity age for a population, we then calculated the proportion of juveniles that transition to become adults, τ, during a given year 
with: 

τ =
1

Maturity age − 1
(4) 

This formula assumes that the transition probability applies to the subset of juveniles that have been in the juvenile population long 
enough to mature out in year t and that transition probability is the inverse of the age of sexual maturity minus one, to account for one 
year spent as a hatchling. 

Survival rates are difficult to measure for gopher tortoises because individuals are long-lived, challenging to recapture, or may 
become unavailable for resurvey by emigrating away from study populations (e.g., Folt et al., 2021). When individuals disappear from 
a study population, mark-recapture analyses are often unable to estimate whether individuals died or emigrated away (Williams et al., 
2002). To this end, most mark-recapture studies of gopher tortoise seeking to understand survival have estimated apparent annual 
survival (φ), which is the probability that individuals survived and stayed within a study area. Studies have found φ to vary between 
adults and juveniles, with adults having higher survival than juveniles, and with more open habitats to support higher survival than 
closed habitats (Folt et al., 2021; Howell et al., 2020; Tuberville et al., 2014). We modeled apparent survival of adults (φa) as 0.96 and 
apparent survival of juveniles (φj) as 0.75, given demographic rates reported from relatively stable populations in Alabama (Folt et al., 
2021) and assuming that populations being modeled here had the potential to be stable. 

We modeled a density-dependent limit on population growth where for each time-step when density increased above 2 adult fe
males/ha, we prevented recruitment into the adult age class. This was meant to simulate population conditions where young adults 
may elect to disperse away from high-density conditions to other populations with lower density, while also enforcing a limit on 
maximum population size (i.e., carrying capacity). Field studies have estimated tortoise density to range from 0.02 to 1.50 individuals/ 
ha among northern populations (Guyer et al., 2012) and from 4.2 to 24.9 individuals/ha in southern Florida (Meshaka Jr. et al., 2019). 
We selected a threshold of 2 adult females/ha (i.e., >5 tortoises/ha, assuming even sex ratios and a 3:1 adult to juvenile ratio) as a limit 
for density dependence because there is much uncertainty when estimating tortoise density and 2 adult females/ha was a conservative 
intermediate estimate of maximum density among populations across the species’ range. 

Gopher tortoises infrequently move long distances from established core home range areas; such movements can result in per
manent emigration and immigration into other populations. We implicitly modeled losses to local populations due to emigration 
because our estimates of apparent annual survival (φ) account for mortality and permanent emigration away from local populations. 
Given ongoing emigration, local populations that are spatially proximate to other local populations might receive immigrants that 
bolster population size. While little quantitative information is available describing the frequency or success of immigration, one study 
found that 2% of adults emigrated from local populations each year (Ott-Eubanks et al., 2003). Given it is unlikely that all emigrants 
successfully immigrate into another population, we modeled the number of immigrants into local populations as a random draw from a 
binomial distribution, where the immigrants to a local population were selected from a pool of migrants across all nearby populations 
with a probability equal to a randomly-drawn, beta-distributed, time-varying annual immigration rate (γ; mean = 0.01). The immi
grant pool was calculated by dividing the total number of adult tortoises in adjacent populations (i.e., metapopulation size, Nm; see 
below) by the number of nearby local populations and multiplying the dividend by 0.75, because we assumed a 3:1 adult to juvenile 
ratio and that juveniles do not migrate between local populations. We constrained γ during each time step such that its 
randomly-drawn value could never exceed 1 − φa, so that the proportion of individuals that survive, emigrate, and/or die could not 
exceed 1. Demographic parameters were modeled as random variables that accounted for both parametric uncertainty and temporal 
variability (see below). 

2.5. Population estimates 

We initialized the model with estimates of gopher tortoise population size from populations on protected, conservation lands and 
nature preserves (e.g., national forests, state forests, state wildlife management areas), military installations, and some private lands 
across the species’ range during the last ten years. Population estimates were collected by a diverse partnership of cooperating state 
agencies, private organizations, and academic institutions (see Acknowledgements) using standardized survey methods. Population 
estimates do not represent an assessment of all local populations of tortoises that exist in southeastern North America, but rather 
represent information that was provided by partners throughout much of the species’ range. 

We initialized starting population size using population estimates derived from data collected using standardized surveys, 
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including burrow surveys (comprehensive and area-constrained; both with and without burrow scoping incorporated) and line- 
transect distance sampling (LTDS; Buckland and Turnock, 1992; Thomas et al., 2010); some burrow data were submitted with un
known methodology. Comprehensive burrow surveys, sometimes called ‘100% surveys’, involve a team of researchers searching a site 
to count the total number of gopher tortoise burrows present. Area-constrained surveys, also referred to as belt transect surveys, use a 
similar methodology as comprehensive surveys. However, these surveys are restricted to a transect of pre-delineated length and width, 
and population estimates are extrapolated site-wide based on the proportion of the site that was surveyed (Auffenberg and Franz, 1982; 
Cox et al., 1987). Because gopher tortoises often construct and/or use more than one burrow per individual, we used a published 
estimate of the relationship between the number of tortoises and burrows among six populations (0.4 tortoises/burrow; Guyer et al., 
2012) to estimate the number of tortoises at sites from burrow count data. This burrow survey method assumes the tortoise-per-burrow 
estimate from Guyer et al. 2012 is generalizable to tortoise populations range-wide and that no burrows are missed during surveys. 
However, other studies suggest higher gopher tortoise conversion rates, indicating our estimate may be conservative in some parts of 
the tortoise’s range (0.614, Auffenberg and Franz, 1982; 0.5, Ashton and Ashton, 2008). Biologists also sometimes use burrow-scope 
cameras in conjunction with burrow surveys to directly estimate abundance of local populations by counting individuals within 
burrows; this method assumes that all potentially occupied gopher tortoise burrows were detected at sites and that only a single gopher 
tortoise is present in a burrow. LTDS surveys are a population estimation method where a research team walks transects through 
habitat, observes tortoise burrows, searches the burrow for a tortoise with a burrow scope, records the spatial location of occupied 
tortoise burrows, and measures the perpendicular distance of each occupied burrow to the transect line (Smith et al., 2009). Invariably, 
burrows and individuals are imperfectly sampled because detection probability of burrows is less than one. However, analysis of the 
LTDS survey data generates functions estimating the decay of the detection rate with increasing distance from the transect line, and 
this detection function can then be used to account for undetected burrows and therefore estimate the total number of occupied 

Fig. 2. Current population size of 457 populations of the gopher tortoise (Gopherus polyphemus; inset) in the southeastern United States that were 
modeled to predict future population growth and persistence probability for the species under scenarios of global change. Each circle represents a 
local population and circles are colored by regional genetic populations (Gaillard et al., 2017), which we used as genetic analysis units. Symbol size 
reflects a log-transformed scale of population size; population size was estimated from analysis of standardized burrow surveys or line-transect 
distance sampling (LTDS) at each site within the last ten years. Grey squares and yellow diamonds represent populations from which estimates 
of fecundity or maturity age, respectively, were used to model geographic variation in demographic rates. Gopher tortoise photograph courtesy of T. 
W. Pierson. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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burrows in the search area (i.e., total population size). We note that because juvenile tortoises have small burrows that are difficult to 
observe, detection of juveniles during all burrow survey types (comprehensive, belt transect, LTDS) is lower than adults; thus, surveys 
may underrepresent smaller size classes in the population estimates (Gaya, 2019; Smith et al., 2009). 

Using spatial survey data associated with population estimates, we sought to operationally identify populations at two spatial 
scales: local populations and metapopulations. Population estimates from surveys (number of tortoises in a population) allowed us to 
parameterize initial population size during simulated projections of populations. However, many population estimates were based on 
large areas that may functionally represent more than one local population. We defined local populations as geographic aggregations 
of individuals that interact significantly with one another in social contexts that make reproduction significantly greater between 
individuals within the aggregation than with individuals outside of the aggregation (sensu Smallwood, 1999). We operationally 
delimited local populations by identifying aggregations of individuals or burrows where individuals were clustered together within a 
600 m buffer to the exclusion of other adjacent individuals or burrows. Analysis of gopher tortoise movement data from Alabama, 
Georgia, and Florida suggested that > 80% of gopher tortoise movements within and among years were less than 500 m (Hunter and 
Rostal, 2021). We selected a 600 m distance to buffer populations to encompass typical movement distances and adjacent habitat 
around surveyed populations that might include tortoises. We assumed that unsuitable habitat for tortoises (i.e., interstates, freeways, 
and expressways; U.S. Department of Transportation Office of Highway Policy Information, 2016; major rivers and lakes [Sciencebase. 
org]; wetlands; and highly urbanized areas [as determined by visual inspection with ESRI imagery]) were unsuitable for tortoise 
movement or survival and considered those as strict barriers when delimiting local populations. Adjacent local populations connected 
to each other by suitable habitat through which dispersal might occur formed a metapopulation. We operationally delimited a met
apopulation by identifying local populations connected by suitable habitat within a 2.5 km buffer around each local population, 
because > 95% of individual movements were less than 2.5 km in southeastern Georgia (Hunter and Rostal, 2021). We received some 
population estimates from properties that were delimited to have two or more local populations of tortoises; in these instances, we 
assumed equal densities and distributed the population size (and confidence limits) proportionally to the areas of each local 
population. 

We restricted the dataset to only consider populations with ≥ 8 individuals (or ≥ 3 females, assuming 1:1 sex ratio and a 3:1 adult 
to juvenile ratio), because populations with 7 or fewer tortoises likely lack sufficient genetic diversity for long-term persistence. Our 
process of delimiting local populations and metapopulations resulted in a dataset of 457 local populations (Fig. 2) that formed 202 
metapopulations and comprised ca. 70,500 female tortoises. Populations with abundance estimates were distributed across each of five 
regional population genetic units delimited within the species (Gaillard et al., 2017): Western (51 populations), Central (41 pop
ulations), West Georgia (97 populations), East Georgia (110 populations), and Florida (158 populations; Fig. 2). We refer to these 
regional genetic units as ‘genetic populations’ hereafter. We used population estimates from local populations to parameterize initial 
population size of adults (Na) and juveniles (Nj) during simulated population projections. We assumed a 1:1 sex ratio and a 3:1 adult: 
juvenile ratio in populations, given observations from stable local populations in Alabama (Folt et al., 2021), and used these ratios to 
quantify the population sizes of juvenile and adult females. 

2.6. Modeling threats 

2.6.1. Climate warming 
We modeled how climate warming may influence gopher tortoise demography. We considered demographic rates that are 

currently known to be influenced by variation in temperature (maturity age, F; above). We then used the estimated linear relationships 
of MAT with maturity age and F (above) to predict how future warming temperatures experienced by populations will drive concurrent 
changes in demography. For each population, we extracted historic estimates of MAT using the ‘WorldClim’ database (Hijmans, 2020) 
and then simulated annual, step-wise climate-warming effects on MAT each year in the future where warming rates were parame
terized by three treatments of climate warming: (1) a 1.0 ◦C increase in MAT over the next 80 years, (2) a 1.5 ◦C increase in MAT over 
the next 80 years, and (3) a 2.0 ◦C increase in MAT over the next 80 years. Each year in the future, we used simulated changes in MAT – 
assumed to increase at a constant rate within each treatment – to calculate mean maturity age and F at sites. This analysis assumes that: 
(i) warming is homogeneous in space and occurs linearly in time, (ii) all local populations will respond homogeneously to warming 
temperatures, and (iii) there are no potential climatic ceilings that would limit growth and reproduction. 

2.6.2. Habitat management 
We modeled effects of habitat management on gopher tortoise populations by linking the frequency of management with pre

scribed fire to adult survival. We assumed that a baseline fire-return interval (FRI) of 1–4 years (mean = 2.5 years) maintains high- 
quality habitat for gopher tortoises (Crawford et al., 2020b; Guyette et al., 2012) and then modeled the probability that a popula
tion is burned during a given year (burn probability; BP) as the inverse of the fire-return interval: 

BPt =
1

FRI
(5) 

For example, an intended two-year FRI for a population would yield a BP of 0.5. Next, using historic baseline data describing 
average seasonal burn opportunity across southeastern North America (Kupfer et al., 2020), we modeled the number of available burn 
days (i.e., days within the burn window) in winter (January–February; W), spring (March–May; Sp), and summer (June–July; Su) as a 
product of the total days per season (59, 92, and 61 days, respectively) and the stochastically-drawn percentage of days historically 
available for burning (0.766, 0.800, and 0.645, respectively). We modeled four treatments for how the number of days available for 
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prescribed fire may change in the future (Kupfer et al., 2020): (1) prescribed fire use will decrease consistent with climate shifts 
predicted by RCP4.5 (‘less management’), (2) prescribed fire use will decrease with climate shifts predicted by RCP8.5 (‘much less 
management’), (3) prescribed fire use will increase opposite of the effect predicted by RCP4.5 (‘more management’), and (4) pre
scribed fire use will remain at current levels (‘status quo’). For each treatment, we modeled effects of climate change on the percentage 
of available burn days over the next 80 years using average effects from across southeastern North America extracted from Kupfer et al. 
(2020): 0.016 increase in winter, 0.040 decrease in spring, and 0.239 decrease in summer (‘less management’ treatment); 0.030 in
crease in winter, 0.105 decrease in spring, and 0.436 decrease in summer (‘much less management’ treatment); 0.016 decrease in 
winter, 0.040 increase in spring, and 0.239 increase in summer (‘more management’ treatment), and no effects on burn days (‘status 
quo’ treatment). The ‘more management’ and ‘status quo’ scenarios could result if habitat managers can offset effects of climate change 
by benefiting from methodological advances in fire management or by using alternative methods rather than prescribed fire, such as 
mechanical or chemical treatments, to achieve similar management goals. 

For the ‘less management’, ‘much less management’, and ‘more management’ treatments, we used the predicted effects to model 
annual incremental changes in the percentage of available burn days per season in each year. Assuming that changes in total burn 
opportunity result in changes in total burn frequency, we modeled BP in each year t as a product of the function of the inverse of FRI 
and predicted changes in the total number of burn days available due to climate change: 

BPt =
1

FRI
∗

Wt + Spt + Sut

W1 + Sp1 + Su1
. (6)  

where subscript 1 is the first year of the projection and t is each year ranging from 1 to the last year in the projection. For the ‘status 
quo’ treatment, we modeled no effects of climate on the number of available burn days per year in an attempt to simulate unvarying 
management ability in the future. 

We used estimates of BP to simulate whether a population was burned in each year. Apparent annual survival probability of female 
gopher tortoises is highest in the first year after a site is burned, but declines by 0.027 each year without fire (Hunter and Rostal, 2021). 
During each year of projections, we simulated adult survival as a stochastic effect of the number of years since last burn (YSB): 

φa
t = 0.96 − 0.027 × YSB. (7) 

Because Hunter and Rostal (2021) only estimated the effect of year-since-burn on survival of adults up to three years since burn, we 
did not extrapolate this effect beyond three years or to juveniles. This formulation assumes that: (i) changes in the number of days 
available to burn result in changes in burn frequency (i.e., management is limited by available burn days), (ii) the season that a burn is 
performed does not influence habitat quality (but see: Aresco and Guyer, 1999b; Yager et al., 2007) and (iii) the effect of YSB on 
survival from Georgia (Hunter and Rostal, 2021) is generalizable to all populations of gopher tortoises. 

2.6.3. Urbanization 
We sought to model effects of urbanization pressure on tortoise populations by linking urbanization predictions from the SLEUTH 

urban growth model (Clarke, 2000) to habitat management of local populations with prescribed fire and to baseline immigration rates 
(γ) of tortoises across metapopulations. First, we modeled an effect of urbanization on habitat management by making BP a function of 
each population’s distance to the nearest urban area (dNUA). We did this to account for fire suppression and/or exclusion that occurs in 
habitat near urban areas, due to concerns about fire safety and smoke management restrictions (i.e., the wildland-urban interface; 
Theobald and Romme, 2007). Because studies have found evidence for fire exclusion at distances from 1 to 5 km from urban areas 
(Theobald and Romme, 2007), we followed (Crawford et al., 2020a) and assumed a moderate distance (3.2 km) within which to model 
effects between urbanization and fire frequency. Specifically, we assumed that local populations immediately adjacent to urban areas 
(distance < 0.1 km) are unable to be managed with prescribed fire and forced BP to 0, management is uninfluenced for populations far 
from urban areas (> 3.2 km; no effect on BP), and management of populations between 0.1 and 3.2 km from an urban area experience 
a negative effect on fire management with BP declining as a linear function of the population’s proximity to the urban area (i.e., 
populations closer to urban areas experience less prescribed fire). For populations between 0.1 and 3.2 km of an urbanized area, we 
added an additional term to Eq. 6 to estimate BP as a consequence of dNUA at time t: 

BPt =
1

FRI
∗

Wt + Spt + Sut

W1 + Sp1 + Su1
∗

dNUAt

3.2
. (8) 

To calculated dNUAt, we first used the SLEUTH model to estimate dNUA from the geometric center of local populations to the edge 
of the nearest neighbor urban area in the current conditions (dNUAi) and at the end of the projection interval (dNUAf ). We then 
calculated dNUAt using: 

dNUAt = dNUAi +

[

(dNUAf − dNUAi) ∗
t

total

]

, (9)  

where total is the total number of years in the projection interval. 
To model effects of urbanization on migration dynamics among local populations within metapopulations, we first estimated the 

total area (A; ha) and urbanized area (UA; ha) within metapopulations in year 2020 using the SLEUTH model. Assuming that tortoises 
cannot survive and/or move through urbanized areas but can survive and move in unurbanized areas, we estimated the initial pro
portion of suitable dispersal habitat (PDHi) in metapopulations at the start of population projections as: 
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PDHi =
Ai − UAi

Ai
. (10) 

We next estimated future urbanization and its effect on dispersal habitat for tortoises using the SLEUTH model predictions for 80 
years in the future. We estimated predicted urbanized area in the future (UAf ; ha). Similar to Eq. 10, we estimated the future proportion 
of suitable dispersal habitat (PDHf ) around populations in the future: 

PDHf =
Ai − UAf

Ai
. (11) 

We calculated the predicted change in proportion of dispersal habitat (ΔPDH) due to future urbanization for metapopulations by 
taking the difference between PDHf and PDHi. For each year t ≥ 3 during population projections, we modeled the number of adult 
immigrants (Ni

t) into local populations in each year as a function of the number of individuals in the metapopulation available for 
immigration to the local population during the previous year (Nm

t− 1), the total number of local populations in the metapopulation (Nlp), 
γt, PDHi, ΔPDH, and the time-step in the future: 

Ni
t =

Nm
t− 1

Nlp − 1
∗ γt ∗

[
PDHi +ΔPDH ∗

ti

total

]
, (12)  

where ti is the year in the population projection, ranging from ti = 3 to the total projection interval (total). We estimated Nm at t = 1 by 
summing the starting population size of all local populations in the metapopulation and subtracting the abundance of the focal 
population, because individuals from the focal population would be unavailable for immigration into their own population. We 
assumed that population growth of the metapopulation term would change through time similarly to that of the local population being 
modeled in any instance; therefore, we modeled changes in Nm through time as a function of changes in abundance of the local adult 
population size during the previous time step, Na

t
Na

t− 1
, during year 3 and beyond. We assumed Nm would not change in years 1 and 2 due to 

constraints related to calculating population growth of the local population. 
We estimated predicted effects of urbanization on the burn probability of local populations and dispersal within metapopulations 

(i.e., with the above equations) using three treatments from the SLEUTH urbanization model that corresponded to uncertainty in future 
urbanization magnitude: (1) a low urbanization treatment where future urbanization was limited to areas with extremely high ur
banization probability (≥0.95), (2) a moderate urbanization treatment where areas were considered urbanized if urbanization 
probabilities were ≥ 0.50, and (3) a high urbanization treatment where areas were considered urbanized if urbanization probabilities 
were ≥ 0.20. We assumed that: (i) immigration was limited to adults and that no juveniles successfully migrate among populations, 
and (ii) immigrants cannot survive or move through urbanized areas (e.g., due to road mortality) but survive perfectly while moving 
through unurbanized areas. 

2.6.4. Sea-level rise 
Projected sea-level rise scenarios provide a range of coastal inundation scenarios that vary in severity. We modeled effects of sea- 

level rise on tortoises using three scenarios of sea-level rise predicted by NOAA, the ‘intermediate-high’, ‘high’, and ‘extreme’ sce
narios, which correspond to predictions from two of the most likely global emission scenarios, RCP6.0 and RCP8.5 (IPCC, 2013; NOAA, 
2020). Local predictions for the two scenarios are available from USGS sea-level monitoring stations across the southeastern United 
States, providing estimates of sea-level rise for stations at decadal time steps in the future to year 2100. We modeled three treatments of 
sea-level rise using predictions from NOAA: (1) the ‘intermediate-high’ scenario derived from RCP6.0, which predicts ca. 1.83 m of 
sea-level rise over the next 80 years, (2) the ‘high’ scenario which predicts 2.55 m of sea-level rise over the next 80 years (an inter
mediate prediction between RCP6.0 and RCP8.5), and (3) the ‘extreme’ scenario derived from RCP8.5, which predicts 3.16 m of 
sea-level rise over the next 80 years (NOAA, 2020). We modeled sea-level rise effects on populations in two ways. First, assuming that 
gopher tortoise populations cannot persist when oceanic levels encroach too close upon their habitat, we simulated decreasing 
elevation of tortoise populations due to sea-level rise. We extracted historic estimates of elevation above sea level (asl; in m) using the 
centroid geographic coordinates of each local population using the ‘WorldClim’ database (Hijmans, 2020). Given the total predicted 
sea-level rise of each treatment over the next 80 years, we simulated incremental sea-level rise at each population in each year in the 
future and subtracted this incremental oceanic rise from the site’s elevation through time. When the site elevation of populations 
decreased to less than 0 m asl, we considered the populations functionally extirpated and forced the population size vectors, Nj and Na, 
to zero. Second, we assumed that habitat inundated by sea-level rise adjacent to local populations would decrease connectivity and 
dispersal dynamics of individuals among populations within metapopulations. We used spatial predictions from NOAA to estimate 
future inundation area due to sea-level rise for each metapopulation, and then we modeled γ to decline as a function of decreasing 
habitat available for dispersal at the landscape scale. Assuming that tortoises cannot survive and/or move through inundated areas but 
can survive and move in un-inundated areas, we extended Eq. (12) to subtract the proportion of area lost to sea-level rise (SLR) from 
the proportion of dispersal habitat (PDHi) in each year: 

Ni
t =

Nmp
t− 1

Nlp − 1
∗ γt ∗

[
PDHi +ΔPDH ∗

t
total

− SLR ∗
t

total

]
, (13) 

The analysis of sea-level rise effects assumes that: (i) sea-level rise throughout southeastern North America will be homogeneous 
and characterized by NOAA predictions derived from data from Ft. Myers, Florida, (ii) populations less than 0 m asl are unable to 
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persist, and (iii) populations are unable to migrate away from sites to form populations outside of the study areas. 

2.7. Scenarios 

We created 32 scenarios varying in estimates of demographic rates and future threats for projection to understand how de
mographic rates and threats, individually or synergistically, may influence future population conditions of tortoises over the next 80 
years (Table 2). The first model was a ‘status quo’ scenario that assumed φa = 0.96, a density-dependent limit on recruitment to the 
adult age class of 2.0 females/ha, γ = 0.01, no future climate warming, sea-level rise, and urbanization, and future management 
consistent with status quo efforts. The next 20 models were single-factor alterations of the ‘status quo’ scenario that varied in φa (0.98, 

Table 2 
Simulation scenarios used to understand how demographic variation, climate warming, sea-level rise, urbanization, and habitat management might 
influence persistence of gopher tortoise (Gopherus polyphemus) populations into the future. The first 21 scenarios (‘sensitivity scenarios’) were used to 
explore the sensitivity of populations to perturbations in demographic rates (adult survival, density-dependent limit, immigration rate) and threats 
(climate warming, sea-level rise, urbanization, and habitat management) relative to a ‘status quo’ model with no additional future threats and status- 
quo management. The final 11 scenarios (‘future conditions scenarios’) were used to predict how populations might respond to potential future 
conditions that involve multiple threats and uncertainty in key demographic rates. Threat levels included three levels of climate warming (1.0, 1.5, 
and 2.0 ◦C increase), three levels of sea-level rise (intermediate-high [1.83 m], high [2.55 m], and extreme [3.16 m] scenarios), three levels of ur
banization scenarios predicted by the SLEUTH model (Clarke, 2000) at probability thresholds of 0.95 (‘low’ prediction), 0.50 (‘medium’ prediction), 
and 0.20 (‘high’ prediction), and four levels of changes in habitat management (no change from status quo, ‘less management’ predicted by RCP4.5 
(Kupfer et al., 2020) [‘low’], ‘much less management’ predicted by RCP8.5 (Kupfer et al., 2020) [‘very low’], and ‘more management’ [the opposite of 
the effect predicted by RCP4.5 in (Kupfer et al., 2020); ‘high’]).  

Scenarios Adult apparent 
survival 

Density-dependent 
limit (females/ha) 

Immigration 
rate 

Climate 
warming (deg 
C) 

Sea-level 
rise (m) 

Urbanization Management 

Sensitivity scenarios             
Status quo  0.96  2  0.01  0  0 None Status quo 
Survival (high)  0.98  2  0.01  0  0 None Status quo 
Survival (low)  0.94  2  0.01  0  0 None Status quo 
Survival (very low)  0.92  2  0.01  0  0 None Status quo 
Max density (high)  0.96  4  0.01  0  0 None Status quo 
Max density (low)  0.96  1  0.01  0  0 None Status quo 
Immigration (very high)  0.96  2  0.04  0  0 None Status quo 
Immigration (high)  0.96  2  0.02  0  0 None Status quo 
Immigration (zero)  0.96  2  0.00  0  0 None Status quo 
Climate warming (low)  0.96  2  0.01  1.0  0 None Status quo 
Climate warming 

(medium)  
0.96  2  0.01  1.5  0 None Status quo 

Climate warming (high)  0.96  2  0.01  2.0  0 None Status quo 
Sea-level rise (low)  0.96  2  0.01  0  1.83 None Status quo 
Sea-level rise (medium)  0.96  2  0.01  0  2.55 None Status quo 
Sea-level rise (high)  0.96  2  0.01  0  3.16 None Status quo 
Urbanization (low)  0.96  2  0.01  0  0 P = 0.95 Status quo 
Urbanization (medium)  0.96  2  0.01  0  0 P = 0.50 Status quo 
Urbanization (high)  0.96  2  0.01  0  0 P = 0.20 Status quo 
Management (more)  0.96  2  0.01  0  0 None More 
Management (less)  0.96  2  0.01  0  0 None Less 
Management (much less)  0.96  2  0.01  0  0 None Much less 
Future condition scenarios             
Low threats  0.96  2  0.01  1.0  1.83 P = 0.95 Status quo 
Medium threats  0.96  2  0.01  1.5  2.55 P = 0.50 Status quo 
High threats  0.96  2  0.01  2.0  3.16 P = 0.20 Status quo 
Management (more) 

+ medium threats  
0.96  2  0.01  1.5  2.55 P = 0.50 More 

Management (less) 
+ medium threats  

0.96  2  0.01  1.5  2.55 P = 0.50 Less 

Management (much less) 
+ medium threats  

0.96  2  0.01  1.5  2.55 P = 0.50 Much less 

Survival (high) + medium 
threats  

0.98  2  0.00  1.5  2.55 P = 0.50 Status quo 

Survival (low) + medium 
threats  

0.94  2  0.02  1.5  2.55 P = 0.50 Status quo 

Immigration (very high) 
+ medium threats  

0.96  2  0.04  1.5  2.55 P = 0.50 Status quo 

Immigration (high) 
+ medium threats  

0.96  2  0.02  1.5  2.55 P = 0.50 Status quo 

Immigration (zero) 
+ medium threats  

0.96  2  0.00  1.5  2.55 P = 0.50 Status quo  
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0.94, or 0.92), density-dependent limit on recruitment (4, 1), γ (0, 0.02, 0.04), climate warming (1 ◦C, 1.5 ◦C, 2 ◦C), sea-level rise 
(1.83 m, 2.55 m, 3.16 m), urbanization (low, medium, high), and habitat management (‘less’, ‘much less’, and ‘more’ management). 
Simulation of the 20 models allowed us to evaluate how tortoise populations would respond to changes in a single demographic 
parameter or threat estimate, relative to the ‘status quo’ scenario, similar to a sensitivity analysis (i.e. ‘sensitivity scenarios’). However, 
future threats to tortoise populations are not independent and most threats are interrelated (e.g., sea-level rise is a consequence of 
climate warming). To understand how tortoise populations will respond to future conditions with multiple concurrent threats, we 
created a set of 11 scenarios with varying levels of threat magnitude and combination as well as uncertainty in important demographic 
rates (i.e., ‘future conditions scenarios’; Table 2). Specifically, we created three scenarios with different levels of threats (’low threats’, 
’medium threats’, and ’high threats’) that experienced habitat management consistent with contemporary target management goals. 
We then used the values from the medium threat scenario and built three scenarios that varied in habitat management treatments 
(‘less’, ‘much less’, and ‘more’ management conditions, each with γ = 0.01) which reflect uncertainty in future management practices 
with a medium level of threats. Our preliminary analyses indicated that populations are sensitive to two demographic parameters: φa 

and γ. To this end, we created five more scenarios that varied in survival (‘high survival’, ‘low survival) and γ (‘very high immigration’, 
‘high immigration’, ‘zero immigration’), each with medium threats and status quo habitat management (Table 2). The 11 future 
condition scenarios were meant to estimate the effects of uncertainty in future threats (climate warming, sea-level rise, urbanization; 3 
scenarios), actionable management practices (habitat management; 3 scenarios), and demographic rates (survival, immigration; 5 
scenarios) on future population persistence. 

2.8. Population projections 

We projected population growth for each local population under each of the 32 scenarios using a stochastic projection structure 
that accounted for scenario uncertainty, geographic variation among populations, parametric uncertainty, and temporal stochasticity 
(Fig. 3). For each scenario, we parameterized certain stochastic variables specific to the scenario and then projected gopher tortoise 
populations across the species’ range into the future. For each population, we specified mean demographic rates specific to the MAT of 
the population’s geographic location (Table 1) and then simulated future population trajectories with 50 replicates each projected 80 
years into the future. During simulations, we applied an uncertainty structure that accounted for both parametric uncertainty (among 
replicates) and temporal stochasticity (within replicates; McGowan et al., 2011). For each replicate, we drew mean values (and an 
associated error term) to model parametric uncertainty; we then modeled temporal stochasticity by drawing stochastically from the 
mean (given its error) during each time step within the replicate. We simulated parameters by drawing replicate-level means sto
chastically from either beta distributions (e.g., probabilities) with shape parameters calculated from mean and standard deviation 
estimates (Morris and Doak, 2002), log-normal distributions (e.g., fecundity), or binomial distributions (e.g., probabilities simulating 
discrete events). We projected populations 80 years into the future because this interval overlapped with the maximum duration of 
future predictions of the climate, urbanization, and sea-level rise models that we used and the interval also encompassed ca. two 
generations for stable populations of gopher tortoises (Folt et al., 2021). 

We used our population projections to estimate future changes in tortoise populations under each scenario (Table 2) in ways that 
could assess future population resiliency, redundancy, and representation. We defined resiliency as the ability of populations to 
withstand stochastic environmental variation that might influence population persistence. We operationally assessed resiliency in two 

Fig. 3. We used a four-loop uncertainty structure to simulate demographic variation and uncertainty in threats, populations, parameter estimates, 
and temporal stochasticity of stochastic variables during population projections for gopher tortoises. For each scenario, we simulated each popu
lation using 50 replicates and projected each replicate into the future for 80 years. 
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ways. First, we measured the predicted percent change (%Δ) in the total number of individuals, local populations, and meta
populations in the future relative to current conditions: 

%Δ =
Nfuture − Ncurrent

Ncurrent
∗ 100%, (14)  

where %Δ values summarize population size as increasing (positive), stable (near zero), or decreasing (negative) over a projection 
interval; we measured predicted %Δ across the species’ range and by genetic population over the entire projection interval. We 
assumed that more resilient populations would be characterized by larger %Δ values than less resilient populations. Second, we also 
assessed the resiliency of future populations to changing environments by estimating extinction risk of populations. For each popu
lation, we estimated the probability that the population was extant during any given year (i.e., persistence probability; Pp) by dividing 
the number of replicates with ≥ 3 females alive by the total number of replicates. We chose < 3 females as a threshold to approximate 
functional extinction because populations with fewer than three females are extremely likely to be inbred (Chesser et al., 1980; 
Frankham et al., 2011). We then used Pp to categorize populations as ‘Extremely Likely to Persist’ (Pp ≥ 0.95), ‘Very Likely to Persist’ 
(0.80 ≤ Pp < 0.95), ‘More Likely Than Not to Persist’ (0.50 ≤ Pp < 0.80), and ‘Unlikely to Persist’ (i.e., extirpated; Pp < 0.50). To assess 
resiliency of metapopulations at the end of the projection interval, we selected the constituent focal population with the greatest Pp and 
used that value to categorize metapopulation persistence. 

We defined redundancy as the number of populations predicted to persist in an area in the future. We operationally assessed 
redundancy by predicting the total number of populations and metapopulations likely to persist in the future through simulation with 
Pp for each population. To do so, we took random draws from a Bernoulli distribution with p = Pp for each population and summed the 
number of populations that persisted. We performed 100 replicates and summarized the simulation with the median (95% CI). 

We defined representation as the breadth of genetic diversity across the species’ range. We viewed regional genetic populations 
across the species’ range (Gaillard et al., 2017) as surrogates for genetic representation and operationally evaluated how represen
tation is predicted to change in the future by examining how the number of individuals, local populations, and metapopulations was 
predicted to change for each genetic population. For each scenario, we summarized the results among all populations across the 
species’ range, but also by genetic populations (‘West’, ‘Central’, ‘West Georgia’, ‘East Georgia’, and ‘Florida’; Gaillard et al., 2017). 

We performed all analyses in the statistical program R (R Core Team, 2018). The general conceptual and predictive population 
modeling structure was adapted from a recently-published population viability analysis for gopher tortoises (Folt et al., 2021). The R 
code and associated files are provided in a USGS software release (Folt and McGowan, 2022). Requests to access the data used to 
perform the analyses should be directed towards the U.S. Fish and Wildlife Service’s Jacksonville Field Office. 

Fig. 4. Effect of mean annual temperature (MAT; ◦C) on (A) maturity age and (B) fecundity of female gopher tortoises (Gopherus polyphemus) among 
populations across the species’ range. 
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Table 3 
Simulated population projections for gopher tortoise (Gopherus polyphemus) populations under scenarios of varying demographic rates and 
anthropogenic threats in the future. Columns summarize the initial number (in 2020), future predicted number in 2100, and percent change (%Δ with 
95% confidence intervals [CI]) for the total population size, number of local populations, and number of metapopulations for 32 scenarios projected 
80 years into the future. See Table 2 for descriptions of scenarios and parameters for each model.  

Scenarios Total population size Number of local populations Number of metapopulations  

Initial Future %Δ Initial Future %Δ Initial Future %Δ 

Sensitivity scenarios                
Status quo  70122  21689 -69 (− 85, − 17)  457  192 -58 (− 61, 

− 56)  
202  92 -55 (− 73, 

− 30) 
Survival (high)  69658  26344 -62 (− 80, 26)  457  279 -39 (− 43, 

− 36)  
202  132 -35 (− 52, 

− 14) 
Survival (low)  69759  18235 -74 (− 91, − 38)  457  130 -72 (− 74, 

− 69)  
202  54 -73 (− 81, 

− 50) 
Survival (very low)  70150  14886 -79 (− 93, − 50)  457  84 -82 (− 84, 

− 79)  
202  40 -80 (− 85, 

− 71) 
Max density (high)  70186  50740 -28 (− 75, 3669)  457  194 -58 (− 60, 

− 54)  
202  90 -55 (− 73, 

− 33) 
Max density (low)  69929  12204 -83 (− 91, − 47)  457  193 -58 (− 61, 

− 55)  
202  93 -54 (− 73, 

− 34) 
Immigration (very high)  69948  77915 11 (− 44, 

25748)  
457  309 -32 (− 36, 

− 30)  
202  148 -27 (− 49, − 8) 

Immigration (high)  69461  39149 -44 (− 71, 48)  457  245 -46 (− 49, 
− 44)  

202  112 -45 (− 67, 
− 19) 

Immigration (zero)  69685  1423 -98 (− 99, − 84)  457  83 -82 (− 84, 
− 80)  

202  56 -73 (− 88, 
− 49) 

Climate warming (low)  69594  21680 -69 (− 86, − 14)  457  200 -56 (− 60, 
− 54)  

202  90 -55 (− 72, 
− 33) 

Climate warming (medium)  69824  22034 -68 (− 85, − 6)  457  200 -56 (− 58, 
− 54)  

202  102 -50 (− 71, 
− 30) 

Climate warming (high)  69838  22091 -68 (− 86, − 2)  457  203 -56 (− 58, 
− 52)  

202  93 -54 (− 73, 
− 31) 

Sea-level rise (low)  69905  21482 -69 (− 85, − 19)  457  192 -58 (− 60, 
− 55)  

202  91 -55 (− 74, 
− 33) 

Sea-level rise (medium)  70101  21146 -70 (− 88, − 18)  457  194 -58 (− 60, 
− 54)  

202  91 -55 (− 73, 
− 35) 

Sea-level rise (high)  69879  21302 -70 (− 87, − 22)  457  193 -58 (− 61, 
− 55)  

202  93 -54 (− 71, 
− 35) 

Urbanization (low)  69942  19320 -72 (− 90, − 27)  457  183 -60 (− 63, 
− 57)  

202  81 -60 (− 74, 
− 35) 

Urbanization (medium)  70049  18872 -73 (− 88, − 36)  457  177 -61 (− 64, 
− 59)  

202  77 -62 (− 77, 
− 39) 

Urbanization (high)  69983  17913 -74 (− 91, − 35)  457  174 -62 (− 65, 
− 59)  

202  76 -62 (− 76, 
− 42) 

Management (high)  70194  21470 -69 (− 85, − 16)  457  195 -57 (− 60, 
− 55)  

202  94 -54 (− 73, 
− 32) 

Management (low)  69894  21280 -70 (− 85, − 17)  457  192 -58 (− 61, 
− 55)  

202  89 -56 (− 74, 
− 33) 

Management (very low)  69993  21238 -70 (− 86, − 22)  457  186 -59 (− 62, 
− 56)  

202  82 -59 (− 74, 
− 36) 

Future condition scenarios                
Low threats  70140  19497 -72 (− 89, − 16)  457  186 -59 (− 62, 

− 57)  
202  85 -58 (− 74, 

− 37) 
Medium threats  69744  18768 -73 (− 90, − 29)  457  180 -61 (− 63, 

− 58)  
202  79 -61 (− 77, 

− 38) 
High threats  69990  19043 -73 (− 90, − 23)  457  181 -61 (− 63, 

− 58)  
202  83 -59 (− 75, 

− 40) 
Management (high) + medium threats  70187  19634 -72 (− 89, − 13)  457  183 -60 (− 62, 

− 57)  
202  86 -57 (− 74, 

− 38) 
Management (low) + medium threats  69976  19463 -72 (− 88, − 14)  457  178 -61 (− 63, 

− 58)  
202  77 -62 (− 76, 

− 40) 
Management (very low) + medium 

threats  
69918  19054 -73 (− 90, − 21)  457  178 -61 (− 64, 

− 58)  
202  83 -59 (− 75, 

− 39) 
Survival (high) + medium threats  69867  23806 -66 (− 85, 16)  457  263 -42 (− 45, 

− 39)  
202  121 -40 (− 59, 

− 20) 
Survival (low) + medium threats  69688  15545 -78 (− 91, − 45)  457  116 -75 (− 77, 

− 72)  
202  52 -75 (− 83, 

− 57) 
Immigration (very high) + medium 

threats  
69854  70632 1 (− 52, 1396)  457  286 -37 (− 40, 

− 35)  
202  134 -34 (− 57, 

− 13) 
Immigration (high) + medium threats  70070  33976 -52 (− 75, 29)  457  228  202  100 

(continued on next page) 

B. Folt et al.                                                                                                                                                                                                             



Global Ecology and Conservation 36 (2022) e02143

15

3. Results 

Linear regression analysis found that fecundity and maturity age vary significantly by MAT across the species’ range (Fig. 4). For 
each 1 ◦C increase in MAT, we found that maturity age decreased by 1.41 years (0.18–2.62, 95% CI; P = 0.029). For each 1 ◦C increase 
in MAT, we found that fecundity increased by 0.48 eggs per clutch (0.24–0.72, 95% CI; P < 0.001). 

Population projection under a ‘status quo’ scenario predicted that populations would experience a − 69% (− 85%, − 17%; 95% CI) 
change in total population size, a − 58% (− 61%, − 56%; 95% CI) change in number of populations, and a − 55% (− 73%, − 30%; 95% 
CI) change in the number of metapopulations (Table 3) over 80 years. Relative to the ‘status quo’ scenario, populations were most 
sensitive to perturbation of γ and φa the ‘very high immigration’ and ‘high survival’ scenarios predicted the highest future numbers of 
individuals, populations, and metapopulations, while the ‘no immigration’ and ‘very low survival’ scenarios drove the greatest re
ductions in all population metrics. Across the sea-level rise and urbanization scenarios, increasing threat magnitude drove small in
creases in predicted population declines, while increased climate warming and increased habitat management slightly alleviated 
population declines. However, the model was not particularly sensitive to variation in climate warming, sea-level rise, urbanization, 
and habitat management threats relative to scenarios varying in γ and φa (Table 3, Fig. 5). Variation in the density-dependent limit on 
recruitment to the adult age class caused strong effects on the predicted number of individuals but not the number of local populations 
or metapopulations; increased density-dependent limits allowed greater population size in a few, large populations, but did not in
fluence the persistence of most local populations or metapopulations (Table 3). 

Future condition scenarios predicted populations to experience slightly increased declines in the number of individuals, pop
ulations, and metapopulations over the next 80 years relative to the ‘status quo’ scenario (Table 3, Table 4). Among the three scenarios 
varying in threat magnitude, scenarios predicted between 72% and 73% declines in the number of individuals (range of 95% CI among 
scenarios [95% CI range]: − 90%, − 16%), 59–61% declines in number of populations (95% CI range: − 63%, − 57%), and 58–61% 
declines in the number of metapopulations (95% CI range: − 77%, − 37%). Increased habitat management erased a small percentage 
(ca. 1%) of predicted declines in individuals, populations, and metapopulations relative to the ‘medium threat’ scenario, while 
decreased management scenarios contributed to additional predicted declines (Table 3). Scenarios of future change varied in their 
effect on populations across a regional scale, with greater declines in the number of individuals and the number of local populations 
predicted for the Western and Central genetic populations relative to the West Georgia, East Georgia, and Florida genetic populations 
(Supplementary Figure 2). 

Categorization of populations by four levels of persistence probability revealed patterns of how varying magnitude of threats and 
demographic rates influenced persistence probability (Table 4). Variation in future threats and management had little influence on the 
number of Extremely Likely to Persist populations, while increases in uncertain demographic rates (γ, φa) caused increases in the 
number of Extremely Likely to Persist populations and decreases in Unlikely to Persist populations relative to the ‘medium threat’ 
scenario. Spatial visualization of population persistence categories from the ‘medium threat with less management’ scenario (perhaps 
the most likely future scenario) illustrated importance of metapopulation structure for persistence probabilities. We observed spatial 
variation in persistence probabilities where Extremely Likely to Persist or Very Likely to Persist populations tended to occur in 
metapopulations composed of a relatively large number of local populations (Fig. 6). We also observed geographic variation in 
persistence probabilities among genetic populations. Specifically, the West Georgia, East Georgia, and Florida genetic populations all 
possessed local populations and metapopulations that were Extremely Likely to Persist and Very Likely to Persist at 80 years in the 
future under the ‘low management + medium threat’ scenario (15 of 97, 11 of 110, and 20 of 158 local populations, respectively), but 
the Western and Central genetic populations lacked any populations from the top two persistence categories (0 of 51 and 0 of 41 local 
populations, respectively; Fig. 6). 

4. Discussion 

We built a multi-site predictive population model for gopher tortoises that accounted for geographic variation and uncertainty in 
both life history and threats and used a scenario analysis to understand the relative influence of demographic rates and threats for 
influencing future population redundancy, resiliency, and representation under uncertain future conditions. Using this integrative 
framework, we observed small, negative effects on future tortoise population conditions due to three threats (sea-level rise, urbani
zation, decreased habitat management) and small, positive effects from climate warming and increased habitat management. Climate 
warming exerted a positive effect due to increased reproduction in populations, a hypothesis that was recently supported by an 
empirical field study (Hunter et al., 2021). However, scenarios with one or more threats did not differ strongly in their predicted effect 
on population metrics relative to a ‘status quo’ scenario with no change in future threats. The minimal predicted effects of threats and 
management on populations may have occurred for a few reasons. For one, the future changes modeled by scenarios may be relatively 

Table 3 (continued ) 

Scenarios Total population size Number of local populations Number of metapopulations  

Initial Future %Δ Initial Future %Δ Initial Future %Δ 

-50 (− 52, 
− 47) 

-50 (− 69, 
− 28) 

Immigration (zero) + medium threats  69866  1573 -98 (− 99, − 68)  457  80 -82 (− 85, 
− 80)  

202  50 -75 (− 88, 
− 52)  
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Fig. 5. The number of extant populations through time during simulated projection of 457 populations of gopher tortoises (Gopherus polyphemus) 
over 80 years. Bold lines are mean predictions, dashed lines are 95% confidence intervals, and white labels indicate scenario numbers from the 
legends. (A) Results from simulations of 21 scenarios, including a ‘status quo’ scenario’ of current demographic and threat conditions and 20 
scenarios varying in single demographic or threat factors relative to the ‘status quo’ scenario (i.e., ‘sensitivity scenarios’). (B) Results from simu
lations of 11 scenarios that vary in threat levels and two demographic parameters: adult apparent survival and immigration (i.e., ‘future condi
tion scenarios’). 
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unimportant compared to the current ‘status quo’ conditions of habitat management and connectivity already present at populations, 
which are predicted to cause considerable population declines over the next 80 years. Alternatively, the predicted effects of threats 
may have been small if we underestimated their effect size or did not appropriately link the threats to demographic rates in realistic 
ways to populations. 

Rather, population outcomes were more strongly influenced by variation in two demographic rates currently characterized with 
substantial uncertainty (survival and immigration), which suggests that predictions about tortoise future conditions could benefit most 
from increased accuracy and reduced uncertainty in estimates of survival and immigration rates. While recent studies have estimated 
habitat and management effects on gopher tortoise survival (e.g., Howell et al., 2020; Folt et al., 2021; Hunter and Rostal, 2021), 
modeling site-specific variation in survival across the gopher tortoise’s entire range is a challenging task. We assumed all populations 
have the potential to be stable and modeled all populations with a baseline survival rate expected under high-quality habitat main
tained with prescribed fire management at a regular management return interval. However, future studies may devise stronger ways to 
model survival and how it varies by habitat type, management frequency, or geographic region (e.g., populations in some southern 

Table 4 
Predicted population persistence probabilities (Pp) categories for 457 populations of gopher tortoises (Gopherus polyphemus) in year 2100 under future 
11 scenarios varying in demographic rates and threats (i.e., ‘future condition scenarios’). Persistence categories are Extremely Likely to Persist (Pp >

95.0%), Very Likely to Persist (Pp = 80.0–94.9%), More Likely Than Not to Persist (Pp = 50.0–79.9%), and Unlikely to Persist (Pp < 50.0%; i.e., 
extirpated). See Table 2 for scenario descriptions.  

Scenarios Extremely Likely to 
Persist 

Very Likely Extant to 
Persist 

More Likely Than Not to 
Persist 

Unlikely to Persist (i.e., 
Extirpated) 

Status quo 28 (6.1%) 28 (6.1%) 102 (22.3%) 299 (65.4%) 
Low threats 26 (5.7%) 22 (4.8%) 103 (22.5%) 306 (67%) 
Medium threats 24 (5.3%) 22 (4.8%) 102 (22.3%) 309 (67.6%) 
High threats 27 (5.9%) 21 (4.6%) 104 (22.8%) 305 (66.7%) 
Management (high) + medium 

threats 
25 (5.5%) 24 (5.3%) 110 (24.1%) 298 (65.2%) 

Management (low) + medium threats 22 (4.8%) 24 (5.3%) 99 (21.7%) 312 (68.3%) 
Management (very low) + medium 

threats 
24 (5.3%) 25 (5.5%) 91 (19.9%) 317 (69.4%) 

Survival (high) + medium threats 34 (7.4%) 84 (18.4%) 169 (37%) 170 (37.2%) 
Survival (low) + medium threats 20 (4.4%) 12 (2.6%) 39 (8.5%) 386 (84.5%) 
Immigration (very high) + medium 

threats 
82 (17.9%) 74 (16.2%) 141 (30.9%) 160 (35%) 

Immigration (high) + medium threats 44 (9.6%) 46 (10.1%) 132 (28.9%) 235 (51.4%) 
Immigration (zero) + medium threats 0 (0%) 2 (0.4%) 37 (8.1%) 418 (91.5%)  

Fig. 6. Persistence probabilities (Pp) of gopher tortoise (Gopherus polyphemus) local populations (left) and metapopulations (right) predicted by a 
future scenario of less habitat management with medium levels of climate warming, sea-level rise, and urbanization (Table 2) projected 80 years 
into the future. Symbols are colored by persistence probability categories: Extremely Likely to Persist (Pp ≥ 95.0%), Very Likely to Persist (Pp =

80.0–94.9%), More Likely Than Not to Persist (Pp = 50.0–79.9%), and Unlikely to Persist (Pp < 50.0%; i.e., extirpated); map background colors 
correspond to five regional genetic populations. 
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areas or habitats may be less reliant on prescribed fire), such that survival estimates more accurately reflect habitat heterogeneity 
and/or are less uncertain. With respect to immigration, previous demographic models for gopher tortoises have largely ignored 
including immigration parameters (e.g., Tuberville et al., 2009, Folt et al., 2021) and modeled tortoise demography as closed to 
immigration, perhaps due to the paucity of field estimates of immigration in wild populations. These models often predicted popu
lation declines, even though recent evidence at some studied populations was more consistent with population stability (Goessling 
et al., 2021). This discrepancy suggests a disconnect between demographic projections that are largely influenced by apparent survival 
projections and actual trends occurring in populations, a discrepancy that may be resolved by incorporating immigration during 
projection analyses. To this end, we incorporated an immigration parameter, γ, for local populations and found scenarios of ‘no 
immigration’ and ‘high immigration’ predicted results that strongly deviated from results of the threat and management scenarios 
predictions. Our results suggest that immigration is an important parameter in tortoise demography that may deserve future attention 
when studying tortoises in the field and building models of tortoise demography in the laboratory. Reduction of uncertainty related to 
survival and immigration rates might increase predictive accuracy and provide stronger information to support future decisions. 

We observed spatial variation in persistence probabilities where Extremely Likely to Persist or Very Likely to Persist populations 
tended to occur in metapopulations composed of a relatively large number of local populations. This result suggests that groups seeking 
to manage for resilient tortoise populations with high future persistence probabilities could aim to conserve tortoise populations on 
large tracts of land that are connected to other populations and managed for open, high-quality habitat for gopher tortoises (Howell 
et al., 2020). Similarly, increased urbanization will decrease connectivity, habitat quality (through decreased management at the 
urban-wildland interface), and immigration among populations, so conservation planning strategies could emphasize securing con
nectivity of existing local populations through strategic land acquisitions or partnerships (Ashrafzadeh et al., 2020). 

While the number of individuals, populations, and metapopulations were predicted to decline across most scenarios, overall 
projections suggest that overall extinction risk for the gopher tortoise is low in the future. Of the populations modeled here (a subset of 
populations that exist in nature), the ‘low management + medium threat’ scenario predicted the presence of ca. 19,000 females 
persisting among 202 local populations and 78 metapopulations in year 2100. The persistence of relatively large numbers of in
dividuals and populations suggests resiliency of the species in the face of global change and redundancy to buffer from future cata
strophic events. However, our analysis predicted geographic variation in future population conditions, with the Western and Central 
genetic populations predicted to experience greater reductions in population redundancy and resiliency relative to the Georgia and 
Florida genetic populations. For example, the Western and Central genetic populations were predicted to have less than 18 and 12 local 
populations, respectively, in year 2100 under the ‘low management + medium threats’ scenario, and none of those populations were 
predicted to have a high persistence probability (Pp ≥ 0.75). Such large reductions in the number of populations and low persistence 
probabilities in the Western and Central genetic populations suggests decreased genetic representation range-wide in the future. 
Notably, the Western genetic population includes all the gopher tortoise populations that currently receive federal protection as 
‘Threatened’ under the ESA (US Fish and Service, 1987). These results are useful to decision makers that are interested in under
standing the risk of losing population redundancy and resiliency among genetic populations across the species’ range. 

We sought to build a population modeling framework that accounted for important elements of population viability analyses, such 
as clear objectives, detailed demographic data and knowledge of life history, temporal stochasticity, parametric uncertainty, density 
dependence, relevant extrinsic factors (i.e., threats), sensitivity analysis, and uncertainty in future conditions (Chaudhary and Oli, 
2020). However, like all models, our framework has limitations and opportunities for improvement. Our model was sensitive to 
immigration, a parameter that we estimated from a single study of tortoise movement in which 2 of 123 individuals emigrated from a 
study area (Ott-Eubanks et al., 2003). We modeled demography as an effect of predicted values of climate warming and fire man
agement at broad spatial scales and made broad assumptions about baseline survival rates being constant across the species’ range. 
Future models could evaluate regional variation in effects of warming and fire management for more realistic predictions of threat 
effects at more detailed spatial scales and seek to model survival as varying among local populations due to covariates, such as habitat 
quality. Our model also focused on simulating the fate of known populations and did not estimate the formation of new populations or 
project the abundance of existing populations not included in the data provided by our partners. Therefore, future predictions for 
persistence of local populations and metapopulations described here were constrained by an upper limit of initial inputs (457 local 
populations, 202 metapopulations) and therefore were unable to exceed these limits. 

While our model cannot provide perfect predictions of future population persistence of gopher tortoises, we do believe the pre
dictions will be useful in supporting decisions (Lawson et al., 2021) for how to conserve and manage gopher tortoises and is specifically 
useful for the impending listing decision for the species under the ESA. Our analysis provides a transparent and repeatable assessment 
of how threats and management actions may influence future population growth, overall extinction risk of both local and regional 
genetic populations, and how uncertainty in important input parameters (e.g., immigration, survival) influences predictions. Our 
paper illustrates a framework for how future conditions analyses that evaluate predicted population trends for Species Status As
sessments and other endangered species risk assessments can incorporate multiple extrinsic threats during projection analyses to 
estimate resiliency, redundancy, and representation of populations in the future. 

5. Conclusions 

Imperiled species face numerous and diverse anthropogenic threats to their persistence, and conservation decisions benefit from a 
sound understanding of how populations, species, and ecosystems will respond to future changes in threats. Our analytical framework 
demonstrates an approach to link predictions from multiple, diverse, spatially-explicit threats to demographic vital rates of imperiled 
species, which permits predictions for how population conditions will be influenced under plausible scenarios of future change. 

B. Folt et al.                                                                                                                                                                                                             



Global Ecology and Conservation 36 (2022) e02143

19

Plausible future scenarios of global change for the gopher tortoise suggest that the species will decline in number and size of pop
ulations and that populations are less likely to persist in two of the regional population genetic units across the species’ range. Pre
dictions were sensitive to variation in survival and immigration, and increased accuracy and reduced uncertainty of these variables 
could increase the usefulness of future predictions. Our approach provides a useful framework for risk assessments for other widely 
distributed, imperiled species with geographic variation in demographic rates and threats that require predictions about future 
populations conditions to support conservation and management decisions. 
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