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Abstract

Driving off-highway vehicles (OHVs), which contributes to habitat degradation

and fragmentation, is a common recreational activity in the United States and

other parts of the world, particularly in desert environments with fragile ecosys-

tems. Although habitat degradation and mortality from the expansion of OHV

networks are thought to have major impacts on desert species, comprehensive

maps of OHV route networks and their changes are poorly understood. To bet-

ter understand how OHV route networks have evolved in the Mojave Desert

ecoregion, we developed a computer vision approach to estimate OHV route

location and density across the range of the Mojave desert tortoise (Gopherus

agassizii). We defined OHV routes as non-paved, linear features, including des-

ignated routes and washes in the presence of non-paved routes. Using contem-

porary (n = 1499) and historical (n = 1148) aerial images, we trained and

validated three convolutional neural network (CNN) models. We

cross-examined each model on sets of independently curated data and selected

the highest performing model to generate predictions across the tortoise’s

range. When evaluated against a ‘hybrid’ test set (n = 1807 images), the final

hybrid model achieved an accuracy of 77%. We then applied our model to

remotely sensed imagery from across the tortoise’s range and generated spatial

layers of OHV route density for the 1970s, 1980s, 2010s, and 2020s. We exam-

ined OHV route density within tortoise conservation areas (TCA) and recovery

units (RU) within the range of the species. Results showed an increase in the

OHV route density in both TCAs (8.45%) and RUs (7.85%) from 1980 to

2020. Ordinal logistic regression indicated a strong correlation (OR = 1.01,

P < 0.001) between model outputs and ground-truthed OHV maps from the

study region. Our computer vision approach and mapped results can inform

conservation strategies and management aimed at mitigating the adverse

impacts of OHV activity on sensitive ecosystems.

Introduction

Habitat fragmentation poses a significant threat to biodi-

versity by reducing habitat quality, diminishing habitat

connectivity, and imperiling species survival (USGS, 2007).

A major contributor to habitat fragmentation is the legal

and illegal use of off-highway vehicles (OHVs), such as

dirt bikes, snowmobiles, mountain bikes, and all-terrain

motor vehicles (Buckley, 2004; Monz et al., 2010). OHV

activity is known to negatively impact species across sev-

eral ecosystems, like temperate woodlands (Switalski &

Jones, 2012), boreal forests (He et al., 2009), wetlands

(Smith, 2021), beaches (Cohen et al., 2014), and desert

landscapes (Lovich & Bainbridge, 1999). The impact of

OHV activities, including trail use and illegal trail crea-

tion, can negatively affect habitat quality and survivorship

for many species (Lovich & Bainbridge, 1999;

USFWS, 2011; USGS, 2007).
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To understand the extent of OHV impacts on fragile

ecosystems, comprehensive mapping of their route net-

works is required for effective management of threatened

species, like the Mojave desert tortoise (Gopherus agassizii;

hereafter, tortoise; Averill-Murray & Allison, 2023). OHV

activities in the Mojave Desert, both legal and illegal, have

long-term negative impacts on sensitive species like the

tortoise (Brooks & Lair, 2005; Lovich & Bainbridge, 1999).

Research has identified OHV recreation as a significant

driver of tortoise population declines and reduced habitat

connectivity (Averill-Murray & Allison, 2023; Boarman &

Sazaki, 2006). The impact OHV activity can have on

desert landscapes is believed to be extensive, with recovery

estimates ranging from decades to centuries (Brattstrom

& Bondello, 1983; Lovich & Bainbridge, 1999). Increased

road density is linked to tortoise population decline,

underscoring the importance of thorough mapping of

travel networks for species recovery (Averill-Murray &

Allison, 2023).

Mapping OHV networks, particularly in western land-

scapes like the Mojave Desert, poses significant challenges

due to the lack of temporally exhaustive data and the per-

vasiveness of routes in non-designated areas and illegal

trail networks (Averill-Murray & Allison, 2023;

Sizek, 2024). For example, a prior effort mapped approxi-

mately 24 140 km of OHV routes in the western Mojave

Desert using a combination of aerial imagery and direct

ground truthing (US DoI, 2019). While useful, this map

represents a static snapshot and cannot be used to assess

changes in OHV networks over time (Sizek, 2024). More-

over, distinguishing narrow features like hiking trails and

OHV routes from similar natural desert patterns (i.e., dry

washes) complicates mapping efforts (He et al., 2009;

Lechner et al., 2009). For these reasons, detecting a

change in a comprehensive OHV route network has been

described as nearly impossible (Sizek, 2024). This chal-

lenge underlines our need to innovate and understand the

impacts landscape changes have on natural resources such

as threatened species and the sensitive ecosystems they

often inhabit.

The application of computer vision, a form of deep

learning, has proven vital in leveraging large databases to

answer complex conservation questions (Hoeser & Kuen-

zer, 2020; Weinstein, 2018) like those associated with

change in OHV networks over time (Sizek, 2024). For

ecology and conservation biology, combining remote

sensing and computer vision helps rapidly process data

and derive outcomes from challenging geospatial imagery

tasks (Lamba et al., 2019; Weinstein et al., 2020). Convo-

lutional neural networks (CNNs) process visual informa-

tion through layers of interconnected nodes and excel at

identifying features in data, such as detecting specific

shapes across a landscape image. For example,

Weinstein (2018) and Weinstein et al. (2020) demon-

strated CNNs’ effectiveness in delineating tree crowns

from their backgrounds across various landscapes, but

noted they faced difficulties with smaller trees and trees

blending into the landscape. Similarly, Van Etten (2018)

encountered issues distinguishing small linear features like

highways from airport runways in urban settings.

Although successful, Yang et al. (2020) also noted chal-

lenges in detecting farmland borders due to similar sur-

rounding linear features. These cases underline the

potential and challenges of using CNNs to identify fea-

tures that blend into their environments, such as OHV

routes in desert landscapes with confounding features like

dry washes (He et al., 2009; Lechner et al., 2009).

To address this complex conservation question and to

inform management efforts and recovery of the tortoise,

we applied computer vision cross-referenced with a preex-

isting static OHV route map to detect OHV routes and

analyze trends in route density across the Mojave Desert

ecoregion over the last five decades. More specifically, we

focused our study on the range of the federally threatened

tortoise to address the increasing concerns of stakeholders

and experts regarding the role of OHV activities as a sig-

nificant driver of the species’ decline. We also aimed to

better understand the potential impact of increased OHV

presence on a species that is considered central to the

persistence of many other species in the Mojave Desert

ecoregion (Esque et al., 2021). To achieve this, we used

aerial imagery from 1970 to 2022 collected from across

the region and a CNN model to estimate the density of

OHV routes at four unique timesteps. Our approach lev-

eraged the strengths of a CNN in classifying images based

on the presence of OHV, rather than delineating their

exact boundaries, thus reducing the impact of image arti-

facts, and broken or obscured features common to land-

scape imagery while leveraging image context, enhancing

our overall analysis (Hoeser & Kuenzer, 2020).

Specifically, we trained a computer vision model to rec-

ognize specific linear features as OHV routes, which

include non-paved designated routes, washes in the pres-

ence of other non-paved routes, and primitive trails simi-

lar in width and geometry to traditional OHV routes. We

then used our computer vision model predictions to

investigate whether OHV route density has increased

across the tortoise’s range over the last 50 years. Finally,

to identify management priority areas with high degrada-

tion risk, we calculated the percent area within extant

Tortoise Conservation Areas (TCAs; defined as tortoise

habitat within critical habitat, Desert Wildlife Manage-

ment Areas, Areas of Critical Environmental Concern,

and other protected areas, or conservation easements

managed for tortoises) and Recovery Units (RUs; defined

as units that are geographically identifiable and essential
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to the recovery of the entire listed population;

USFWS, 2011) that increased in OHV route density over

the period 1980–2022.

Methods

Study area

We examined a ~13 million-ha study area that encom-

passed the range of the tortoise based on predicted habi-

tat suitability (Nussear et al., 2009), the delineation of

tortoise RUs (USFWS, 2011), and the extent of known

tortoise occurrence (Allison & McLuckie, 2018) in the

Mojave and Colorado Deserts of California, Nevada, Ari-

zona, and Utah (Fig. 1). Nearly half (47.3%) of the study

area is managed by the Bureau of Land Management

(BLM), a multi-use mandated agency whose lands in the

region include sites managed for recreation (including,

specifically, OHV use), hardrock mining, livestock graz-

ing, and renewable energy development. Other major

landowners in the study area include the National Park

Service (16.1%) and the Department of Defense (13.0%).

This region is characterized by steep and elongated

mountain ranges juxtaposed with flat, dry desert valleys

dominated by creosote and bursage shrubs (Gray

et al., 2019). For a more detailed description of the vege-

tation and other environmental features of the study area,

see Nussear et al. (2009).

Aerial imagery

To model OHV routes across the range of the tortoise,

we leveraged publicly available and privately managed

image sources (Table 1). Collated historical aerial imagery

for the 1970s and 1980s was procured from the BLM

National Operations Center (NOC) and Historical Aerials

(Nationwide Environmental Title Research, LLC; NETR).

We obtained historical imagery from NETR and NOC at

multiple spatial resolutions (Table 1). We also acquired

USGS digital orthophoto quadrangle (1-m resolution)

scenes for the years 1990–2003 (USGS, 2018). However,

we were unable to use these data for modeling OHV

routes due to inconsistent quality (e.g., discolored images,

various resolutions provided) and spatial coverage.

Although the historical imagery we used also had incon-

sistencies, these were less frequent and did not prevent

effective preprocessing and image cleaning. For the years

2003–2022, we used geospatial tiles from the U.S. Depart-

ment of Agriculture National Agriculture Imagery Pro-

gram (NAIP; 1-m resolution) acquired through Google

Earth Engine (Gorelick et al., 2017), which offered the

broadest contemporary spatial coverage, though coverage

varied by state and year as per NAIP’s data collection

protocol (USDA, 2022). We also observed some image

artifacts in the contemporary imagery predominantly

around the 2010 time period, but similar to the historical

imagery, over a much smaller extent than the 1990’s data.

All scenes were projected to a common coordinate refer-

ence system (EPSG: 3857; a web-Mercator projection)

Figure 1. Study area (outlined in red) representing the range of the

Mojave desert tortoise (Gopherus agassizii). Bureau of Land

Management (BLM) open-use off-highway vehicle (OHV) areas in

California are outlined in black. Department of Defense (DoD) and

National Park Service (NPS) lands are highlighted in purple and green,

respectively.

Table 1. Outline of the unaltered quality, source, and temporal range

of aerial imagery used for off-highway vehicle route density detection

model development.

Timestep

Temporal

coverage

Native resolution

(meters) Source

1970s 1970–1979 0.4–1.0 NETR,

NOC

1980s 1980–1989 0.7–0.8 NETR

2010s 2010–2012 0.6–1.0 NAIP

2020s 2019–2022 0.6–1.0 NAIP

The table includes the representative timesteps used in modeling, the

years included in each timestep, the range of spatial resolution, and

the source of corresponding aerial imagery datasets. Geospatial data

were sourced from the U.S. Department of Agriculture National Agri-

culture Imagery Program (NAIP), Bureau of Land Management

National Operations Center (NOC), and Nationwide Environmental

Title Research, LLC (NETR).
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and resampled to a 1-m resolution grid for consistency in

subsequent processing. Our curated collection of histori-

cal (1970–1989) and contemporary imagery (2010–2022)
was then organized into four individual timesteps, with

each step representing a composite mosaic of images from

different years from a given temporal snapshot (Table 1).

Image preprocessing

Prior to modeling, we implemented image quality control

measures to address the occurrence of image artifacts on

the selected landscape imagery. Although usable, some

tiles of the 2010 timestep required intensive removal of

artifacts and other image quality issues introduced by

multiscene mosaicking. Artifacts and other image quality

issues were also present in the 1970s and 1980s data but

to a much lesser extent and appeared largely due to side

effects of digitization. Many of these notable artifacts

manifested as linear features on mosaicked scenes, which

propagated erroneous detection of OHV features on the

landscape through image classification modeling. To cor-

rect this, we utilized a multistep preprocessing approach

to identify, mask, and smooth over these artifacts. Specifi-

cally, we used a modified Sobel filter in R (R Core

Team, 2018), which detects changes in pixel intensity

across a two-dimensional gradient to aid identification of

edges in imagery (Vincent & Folorunso, 2009). Applica-

tion of our Sobel filter resulted in the generation of geos-

patial imagery ready for ingestion into our computer

vision algorithm (see Appendix S0 for more details about

our Sobel filter and other preprocessing steps).

Computer vision data curation, annotation,
and model training

To identify OHV route density, we developed our own

set of OHV image classification models using a Nvidia

Tesla (V100; 32GB VRAM) GPU and the Fast.ai library

(Howard & Gugger, 2020) in PyTorch (Paszke

et al., 2019) deployed on Microsoft Azure. We utilized an

image classification model instead of a segmentation

model as it might generalize better to detect truncated,

broken, and obscured features, or otherwise visually vari-

able features common to earth observation image sets

(Hoeser & Kuenzer, 2020). Our models were constructed

using a Resnet-101 architecture (He et al., 2016) pre-

trained on the ImageNet dataset (Deng et al., 2009). We

selected a type of image classification model due to its

cost-efficiency and effectiveness in generalizing across

highly variable landscapes (Hoeser & Kuenzer, 2020). This

enabled us to classify OHV route density within a given

150 m x 150 m (0.0225 km2) area, hereafter referred to

as a raster cell (Fig. 2).

We considered the quality of the contemporary image

data to be acceptable, but variable in space and time. For

example, the majority of the contemporary imagery was

full color and generally mosaicked without visible seams

between images. This is in contrast to the historical data,

which had minor image tearing, processing artifacts, and

variable lighting and coloration (i.e., both black and

white, and color imagery) even after the application of

our Sobel filter. Although usable, the historical image

quality was lower than that of the contemporary image

data. When presented with lower quality imagery, past

research has suggested the application of a ‘hybrid’

approach of supplementing lower-quality imagery with

additional higher quality images that can boost the per-

formance of computer vision models (Lendemer

et al., 2020; Robillard et al., 2023). To account for differ-

ences in image type and quality, we developed three dif-

ferent convolutional neural network (CNN) computer

vision models: one model was trained only on image data

from 2010 to 2022 (contemporary model), one model

was trained only on image data from 1970 to 1989

Figure 2. Example images from computer vision model classifications that were used to measure off-highway vehicle (OHV) route density and

quantify changes in density through space and time in the Mojave Desert ecoregion. We trained models to classify images into one of four

categories: none (gray panel; 0 m OHV), low (yellow panel; ≤150 m OHV), medium (orange panel; 151–450 m OHV), and high (red panel;

451–22 500 m OHV). Each category represents an estimate of the relative density of OHV routes within a given output raster cell.
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(historical model), and one used both datasets to train a

‘hybrid’ model (see Fig. S1 in Appendix S1 for more

details on our computer vision pipeline).

To develop our training dataset, we resampled aerial

imagery to a uniform 1-m resolution. Contemporary

image tiles were derived specifically from across

BLM-designated ‘open-use’ OHV areas in southern Cali-

fornia, which offered abundant OHV route imagery, using

the ‘terra’ package (Hijmans et al., 2022) in the statistical

program R (R Core Team, 2018). Image tiles were ran-

domly sampled without overlap, and each tile was split

into smaller 0.0225 km2 images (n = 11 098). These

images were then visually categorized by three reviewers

into one of four classes (Fig. 2) based on the approximate

amount (i.e., linear distance) of OHV routes in a given

image. Images were classified into ‘none’ (no OHV routes

detected), ‘low’ (1–150 m of OHV route present),

‘medium’ (151–450 m of OHV route present), and ‘high’

(451–22 500 m of OHV route present). Given that each

image was a square, uniformly 0.0225 km2, this made the

classification by OHV trail length approximation relative

to the known cell size (see Appendix S1 for more details

on the data annotation process).

An additional consideration was the visual similarities

between linear features such as dry-riverine habitats

(certain-sized desert washes) and OHV routes and roads.

To account for the influence washes might have on OHV

route density estimates, reviewers were instructed to only

label washes as potential OHV routes if they were directly

associated with an OHV route in the same image; this

standard was applied to both historical and contemporary

datasets. Building on past research showing that washes

are often used for OHV recreation (Custer et al., 2017),

we refined our model to detect only washes similar in size

and shape to OHV routes. From an aerial perspective,

OHV routes appeared uniformly straight and thick, con-

trasting with the winding, variable-width washes. We

excluded paved roads and urban streets from the OHV

route density categories and discarded images with pro-

cessing artifacts during training. The final combined

hybrid dataset of reviewed images (n = 2647) was com-

posed of a balance of contemporary (n = 1499) and his-

torical (n = 1148) images. In each instance, 20% of the

image data was withheld from training for validation,

while the remaining 80% of the data was utilized for

model development (Table 2).

Model testing, validation, and deployment

Given the varying image quality of our datasets, we devel-

oped three different test sets to benchmark the perfor-

mance of our three models. We randomly selected images

from areas not used in either training effort, from along

southern California and along the southern Nevada–
California border for each of these datasets. Using novel

data to test our models is a standard practice in deep

learning to ensure generalization and to avoid overfitting

models (Goodfellow et al., 2016). We scored images with

three reviewers and included results in the final test effort.

Test sets were developed for both contemporary (n = 956

images) and historical (n = 851 images) datasets (Table 3).

Finally, we generated a hybrid dataset with an equal ran-

dom selection of data from both the contemporary and

historical test sets (n = 1807 images) (Table 3). For

deployment, we selected our best model, the hybrid

(Table 3), based on its F1 score. The F1 score demon-

strates a balance between the model’s precision (correct-

ness) and recall (comprehensiveness) (Goodfellow

et al., 2016). Deploying this model, we estimated the

OHV route density across the study area using all avail-

able data for each of the four timesteps. Based on these

results, we produced a spatial data layer for each timestep

with a resolution of 0.0225 km2. We then processed our

OHV route density layers using a two-part cleaning and

masking protocol (see Appendix S2 for more details).

Model evaluation

To further verify that our computer vision algorithm esti-

mated OHV route density with high accuracy, we used a

spatial dataset of approximately 24 140 km of known,

ground-truthed OHV routes completed in 2013 as part of

the BLM’s West Mojave Route Network Project

(WMRNP; US DoI, 2019). Routes were inventoried dur-

ing 2012–2013 both in the field with handheld GPS

equipment and by review of high-quality aerial imagery

from 2009 by GIS personnel (for further details see US

DoI, 2019, Chapter 1, Section 1.1.4). We generated a spa-

tial data layer representing the density (total length per

cell) of these known OHV routes at the same resolution

(0.0225 km2) as the OHV computer vision algorithm

Table 2. Computer vision training and testing results for the three

off-highway vehicle route density models.

Model

Training

epochs

Training

images

Validation

images

Validation

accuracy

Contemporary 60 1200 299 79.9

Historical 134 919 229 75.8

Hybrid 73 2118 529 78.3

‘Training epochs’ represents the length of time the models were

trained for. ‘Training images’ is the total count of images used to

train a model. ‘Validation images’ is the number of images held apart

from training to iteratively measure model accuracy. ‘Validation accu-

racy’ is the percentage of correctly identified images by the final itera-

tion of the model.
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outputs. We then used an ordinal logistic regression

model (MASS v7.3–60.2; Ripley & Venables, 2002) to test

the relationship between the density of these known OHV

routes and the probability of a raster cell belonging to a

given predicted OHV route density category in the pro-

cessed 2010 decadal output. As the exact spatial extent of

the area inventoried for the WMRNP was not available to

us, we limited this analysis to raster cells for which there

was both an OHV route density estimate and a known

route density value greater than 0 (n = 112 369). The

area included in this validation analysis was 2528.30 km2,

or approximately 1.01% of the entire area of the tor-

toise’s range.

Trend analysis

To assess the utility of the data products generated from

our computer vision model to tortoise conservation and

natural resource management in the Mojave Desert, we

calculated the total area in every TCA and RU

(USFWS, 2011) in each of the OHV route density classes

(low, medium, and high) using the 1980 and 2020 time-

steps to maximize our temporal view. As a measure of

quality control, we did not use the 1970 timestep given

the relative incompleteness of its spatial coverage com-

pared to the other timesteps (See Table 3). Additionally,

we calculated the total area and percent cover in every

TCA and RU exhibiting an increase in OHV route density

class over the 1980–2020 timesteps.

To evaluate range-wide temporal change in OHV route

density, we estimated the minimum and median total

length of OHV routes within the Mojave Desert ecosys-

tem at each timestep. We estimated the minimum and

median total length of OHV routes to ensure our totals

were conservative and did not provide a maximum esti-

mate due to the uncertainty regarding the maximum pos-

sible OHV route density that could be represented by the

‘high’ category. To test the hypothesis that OHV route

density has increased across the tortoise range over the

last 50 years, we used binomial logistic regression in the

‘lme4’ R package (v1.1–35.3; Bates et al., 2015) to model

the effect of year on the likelihood that a given raster cell

contained OHV routes. To test the effect of year, we asso-

ciated each raster cell value with the year at the end of

the range of years included in a given decadal timestep

(i.e., for the 1970s decade, we associated the 1970s raster

cell values with the year 1979). We accounted for

non-independence stemming from repeated sampling in

space through time using a unique value for each raster

cell as a random effect and accounted for spatial and tem-

poral variation in image quality using a tile-by-year ran-

dom interaction effect. We then mapped the magnitude

of the increase in OHV route density from 1980 to 2020

timesteps (see Appendix S3 for details on methods related

to trend visualization and Appendix S4 for details on

regression modeling).

Results

Computer vision model testing and
deployment

Test efforts suggested that our models were benchmarked

with a broad range of results, with accuracies ranging

from 40% to 78% (Table 3). Most notably, the hybrid

model reached an accuracy of 77% with an F1 of 0.76

against a hybrid test set (Fig. 3). For the range of the tor-

toise, we classified a total of 39 707 905 unique raster

cells across all four timesteps (Fig. 4), amounting to a

total area analyzed of 893 428 km2 (Table 4).

Evaluation

The ordinal logistic regression model of known OHV

route density and computer vision model predictions

indicated a significant positive relationship (OR = 1.01,

Table 3. Summary of results for off-highway vehicle route density model benchmarking across the three test sets.

Model

Historical data (n = 851) Contemporary data (n = 956) Hybrid data (n = 1807)

Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

Historical (trained on 1970

–1989 imagery)

0.70 0.70 0.82 0.69 0.59 0.59 0.40 0.48 0.64 0.61 0.57 0.59

Contemporary (trained on 2010

–2022 imagery)

0.48 0.48 0.24 0.32 0.73 0.73 0.69 0.71 0.61 0.61 0.57 0.55

Hybrid (trained on combined

imagery)

0.78 0.78 0.76 0.77 0.77 0.77 0.75 0.76 0.77 0.77 0.75 0.76

Metrics include: ‘accuracy’ (the percentage of correctly identified images to the total number of images tested on), ‘recall’ (the ratio of ‘true posi-

tives’ to the sum of true positives and false negatives), ‘precision’ (the ratio of true positives to the sum of true positives and false positives), and

‘F1’ (the harmonic mean of recall and precision). Sample size (n) is representative of the number of images in each dataset.
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P < 0.001) between known route density and predicted

OHV route density category. For each 100-meter increase

in known OHV route length within a given raster cell

(~0.0225 km2), there were 89.4% greater odds of that ras-

ter cell having a higher associated OHV route density cat-

egory (87–92%, 95% CI, P < 0.001). Of the categories

containing OHV route features, low had the greatest

probability from 0 to 214 m, medium from 215 to

392 m, and high had the greatest at >392 m. Shifts in

probabilities of OHV route density categories low,

medium, and high generally reflected the amount of

OHV route denoted by each category (none = 0 m,

low = 1–150 m, medium = 151–450 m, and high

≥451 m) (Fig. 5).

Trend analysis

For raster cells with OHV route density estimates at each

timestep (66% of the total range area), we observed an

overall increase between the 1980s and 2020 timesteps in

the total length (Fig. 6) and density of OHV routes

(Fig. 7). Our overall OHV route length increased by

80.3% for the minimum estimate and 108.9% for the

median estimate. Regression modeling demonstrated an

increase in OHV route density (OR = 1.11, P < 0.001) in

the Mojave Desert ecosystem over the time period

between 1970 and 2022. The odds of a given raster cell

containing one or more OHV routes were predicted to be

5.8 times higher (5.4–6.3, 95% CI) for each year that

passed between 1979 and 2022. Estimates of OHV route

density in each of the TCAs and RUs suggested an overall

increase in OHV activity in these areas from 1980 to 2020

(Table 5). On average, RUs exhibited an increase in OHV

route density across 7.85% of their area (SD = 1.32%,

range = 6.05–9.45%) and TCAs exhibited an increase in

OHV route density across 8.45% of their area

(SD = 1.61%, range = 6.74–12.73%). See Appendix S5 for

more details on trend analysis results.

Discussion

Our results demonstrate that a computer vision model

was capable of detecting OHV routes and estimating

route density with relatively high accuracy for a period

spanning more than five decades. To our knowledge, this

is the first effort of its kind for a dynamic desert environ-

ment. Our accuracy estimates are consistent with those

yielded by machine learning approaches used to detect

linear features across other complex landscapes, including

agricultural (Yang et al., 2020), urban (Najjar

et al., 2017), and industrial areas (Van Etten, 2018).

Importantly, a comparison of our model output with

known OHV route locations substantiates our finding,

which suggests that the prevalence of OHV routes has

increased significantly over the region and time period of

analysis. Specifically, our results suggest OHV activity

increased across TCAs and RUs between 1980 and 2020

(see Appendix S6 for more details). Although this trend

has previously been identified within a more limited tem-

poral scale (Brooks & Lair, 2005), ours is the first effort

to quantify and map such a trend with broad spatial cov-

erage and multidecadal resolution.

Evaluation of our hybrid model via a confusion matrix

demonstrated an overall accuracy of 77%. As the classifi-

cation of cells in the ‘no OHV route’ class scored an

accuracy of 94.7%, the majority of the model misclassifi-

cations stemmed from cells with one or more OHV

routes. When linear features are present, misclassification

can occur in the form of either overestimation or under-

estimation (Goodfellow et al., 2016). Overestimation

occurs when the model predicts more linear features than

actually exist, leading to a higher false positive rate

(approximately 7.66%). Conversely, underestimation hap-

pens when the model predicts fewer features than present,

resulting in a higher false negative rate (approximately

22.97%). Though such detection error exists in our model

outputs (<23% of cells), this includes both overestimation

and underestimation, and as such still permits us to con-

servatively measure overall patterns and changes in OHV

route features and density in space and time.

Figure 3. Confusion matrix of hybrid model test classification

accuracy. The model yielded an accuracy of 0.77 (n = 1807 images)

and an F1 of 0.76. The Y-axis represents the ‘Actual class’ an image

belongs to, while the X-axis is the model’s ‘Predicted class’. The

number within each box represents counts of predicted vs. actual

images. Squares with correct (diagonal) and incorrect (off-diagonal)

images are colored based on the relative density of their classification

(darker blue means more in the category).

ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7

A. J. Robillard et al. OHV Route Detection in Tortoise Habitat

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.70004, W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Our implementation of an image classification

approach, rather than a segmentation model (Hoeser &

Kuenzer, 2020), allowed us to focus on identifying and

locating OHV routes without the need for precise delinea-

tion and differentiation of every feature in our training

data, which there are innumerable on a complex land-

scape. Using image classification also greatly reduced the

time and cost spent on data annotation and computation

(Csurka et al., 2022) while allowing us to maintain a sim-

ilar expectation of accuracy to a segmentation model

(Giorgiani do Nascimento & Viana, 2020). In addition,

image classification models are particularly effective in

generalizing across the highly variable landscapes com-

mon to remotely sensed data, including different orienta-

tions, densities, and partial obscurity of features (Hoeser

& Kuenzer, 2020). Image classification models effectively

generalize across variable landscapes in remotely sensed

data, handling different orientations, densities, and partial

obscurity of features (Hoeser & Kuenzer, 2020).

Visual inspection of our model results indicates that

high-density OHV areas, such as those near urban centers

like Nellis Dunes OHV Recreation Area, were occasionally

Figure 4. Off-highway vehicle (OHV) route density maps encompassing the range of the tortoise in the Mojave Desert ecoregion generated for

four decadal timesteps (1970s, 1980s, 2010s, and 2020s) using aerial imagery and a computer vision model. Output categories from the

computer vision model are: ‘none’ = no OHV routes; ‘low’ = up to 150 m of OHV route; ‘medium’ = 151–450 m of OHV route present; and

‘high’ = 451–22,500 m of OHV route present. Categories medium and high were combined for visualization purposes. Areas in black reflect the

presence of open water or developed areas (Dewitz, 2023; Sohl et al., 2016), designated paved roads (US Census Bureau, 2022), or where source

imagery data were unavailable.
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misclassified, making areas of intense use appear similar

to open desert landscapes, particularly in BLM open-use

areas and dry lake beds. Notably, our computer vision

pipeline used a single geospatially referenced image of a

0.0225 km2 area and classified the density of OHV routes

in that raster cell. Future improvements to our computer

vision model could incorporate a multiscale context

approach (e.g. Xie et al., 2018), which would provide

additional information (e.g., consideration of adjacent,

intact segments of routes) to better identify more chal-

lenging areas such as those extreme cases of intense usage

or areas with lower quality imagery (e.g., historical

imagery).

Despite observing artifact issues with source imagery in

our image preprocessing steps, these issues were negligible

after preprocessing and led to only minor discrepancies in

our estimation of OHV route density. Nevertheless, devel-

oping a model to detect OHV routes from remotely

sensed imagery presents a significant challenge due to

uncertainties around defining an OHV route (Westcott &

Andrew, 2015). Documented use of washes for OHV rec-

reation (Custer et al., 2017) led us to include images of

washes, but limited inclusion only to instances that clearly

included recognizable OHV routes and washes in them.

Visual inspection of our results suggests we successfully

excluded the majority of smaller washes (i.e., lower order

hydrologic features) and many large washes (higher

order). However, our model did detect some

medium-sized (mid-order) washes, which appeared simi-

lar to OHV routes in our source imagery. Without exten-

sive ground truthing of these mid-order washes across the

region, we cannot definitively state their use as OHV

routes, but we acknowledge their potential for such use.

By leveraging spatial insights from our findings, man-

agers can use our map-based products to prioritize

enforcement and restoration efforts in regions experienc-

ing the greatest ecological disruption. Although our

model results are not intended to pinpoint the exact loca-

tions of every route, we believe our map-based products

can be a useful aid in effectively mitigating OHV-related

Table 4. For each timestep, the number of raster cells classified in

computer vision output layers, the total area, and the percent of area

analyzed in our classification of off-highway vehicle route density

across the range of the tortoise in the Mojave Desert ecoregion in

southern California.

Timestep

Number of raster

cells classified Total area (km2)

Percent of

range area (%)

1970s 8 090 344 182 032.74 72.93

1980s 10 862 633 244 409.24 97.93

2010s 10 396 239 233 915.38 93.72

2020s 10 358 689 233 070.50 93.38

Total 39 707 905 893 427.86

Figure 5. Predicted probability of a given raster cell belonging to each off-highway vehicle (OHV) route density category at different densities of

known OHV routes based on an ordinal logistic regression model of known OHV routes (U.S. Department of the Interior, 2019) and our

computer vision model predictions. A 95% confidence interval is denoted by dashed lines and shading.
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impacts. The insights gained from our study provide a

foundation for expanding the application of these

methods to other systems where OHV routes and similar

linear features pose threats to biodiversity. Woodland,

montane, beach, and wetland ecosystems, which also face

significant ecological pressures from recreational trail net-

works, could benefit from similar detection approaches

(Cohen et al., 2014; He et al., 2009; Smith, 2021; Switalski

& Jones, 2012). Similar methods as those demonstrated

here could be applied to other areas where OHV route

detection would benefit ecosystem management, such as

areas impacted by intense poaching, which are facilitated

by OHV route networks (Switalski & Jones, 2012).

Beyond OHV routes, the techniques demonstrated here

can be adapted to detect other linear features, such as

pipelines, fences, and powerlines, which fragment habitats

and alter wildlife movement (Jakes et al., 2018; Richard-

son et al., 2017).

Further research that integrates computer vision with

collated archival and contemporary remotely sensed data

will be pivotal in addressing complex conservation ques-

tions. Future research should concentrate on refining

these models to enhance their accuracy and performance

in challenging environments. This includes incorporating

multiscale contextual analyses to improve feature detec-

tion and utilizing modern high-resolution imagery to

broaden their applicability. By advancing the capabilities

and extending the scope of these approaches, we can

deepen our understanding of the ecological impacts of

human infrastructure and develop more effective tools for

conservation and land management across varied

landscapes.
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